Abstract

Incoherent optical processing with films made from the biological photochrome bacteriorhodopsin (BR) is accomplished by use of the photoinducible anisotropy of polymeric BR films. BR has two spectrally well separated states, B and M, both of which show a high degree of optical anisotropy. Whereas with green and blue light the BR molecule can be switched between the two states, the accompanying changes in the refractive index may be nondestructively read out by wavelengths in the red, e.g., at 676 nm. As the sensitivity of CCD arrays is quite high for such wavelengths, even low-power light sources are sufficient for detection. We describe a BR-based XOR computing module for incoherent optical data processing.

© 2002 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. Oesterhelt and W. Stoeckenius, Nature New Biol. 233, 149 (1971).
    [CrossRef]
  2. N. Hampp, Chem. Rev. 100, 1755 (2000).
    [CrossRef]
  3. A. Seitz and N. Hampp, J. Phys. Chem. B 104, 7183 (2000).
  4. N. M. Burykin, E. Y. Korchemskaya, M. S. Soskin, V. B. Taranenko, T. V. Djukova, and N. N. Vsevolodov, Opt. Commun. 2, 68 (1985).
    [CrossRef]
  5. R. Thoma and N. Hampp, Opt. Lett. 17, 1158 (1992).
    [CrossRef] [PubMed]
  6. D. Zeisel and N. Hampp, J. Phys. Chem. 96, 7788 (1992).
  7. Y. Okada-Shudo, I. Yamaguchi, H. Tomoioka, and H. Sasabe, Synth. Met. 81, 147 (1996).
    [CrossRef]

2000

N. Hampp, Chem. Rev. 100, 1755 (2000).
[CrossRef]

A. Seitz and N. Hampp, J. Phys. Chem. B 104, 7183 (2000).

1996

Y. Okada-Shudo, I. Yamaguchi, H. Tomoioka, and H. Sasabe, Synth. Met. 81, 147 (1996).
[CrossRef]

1992

R. Thoma and N. Hampp, Opt. Lett. 17, 1158 (1992).
[CrossRef] [PubMed]

D. Zeisel and N. Hampp, J. Phys. Chem. 96, 7788 (1992).

1985

N. M. Burykin, E. Y. Korchemskaya, M. S. Soskin, V. B. Taranenko, T. V. Djukova, and N. N. Vsevolodov, Opt. Commun. 2, 68 (1985).
[CrossRef]

1971

D. Oesterhelt and W. Stoeckenius, Nature New Biol. 233, 149 (1971).
[CrossRef]

Burykin, N. M.

N. M. Burykin, E. Y. Korchemskaya, M. S. Soskin, V. B. Taranenko, T. V. Djukova, and N. N. Vsevolodov, Opt. Commun. 2, 68 (1985).
[CrossRef]

Djukova, T. V.

N. M. Burykin, E. Y. Korchemskaya, M. S. Soskin, V. B. Taranenko, T. V. Djukova, and N. N. Vsevolodov, Opt. Commun. 2, 68 (1985).
[CrossRef]

Hampp, N.

N. Hampp, Chem. Rev. 100, 1755 (2000).
[CrossRef]

A. Seitz and N. Hampp, J. Phys. Chem. B 104, 7183 (2000).

R. Thoma and N. Hampp, Opt. Lett. 17, 1158 (1992).
[CrossRef] [PubMed]

D. Zeisel and N. Hampp, J. Phys. Chem. 96, 7788 (1992).

Korchemskaya, E. Y.

N. M. Burykin, E. Y. Korchemskaya, M. S. Soskin, V. B. Taranenko, T. V. Djukova, and N. N. Vsevolodov, Opt. Commun. 2, 68 (1985).
[CrossRef]

Oesterhelt, D.

D. Oesterhelt and W. Stoeckenius, Nature New Biol. 233, 149 (1971).
[CrossRef]

Okada-Shudo, Y.

Y. Okada-Shudo, I. Yamaguchi, H. Tomoioka, and H. Sasabe, Synth. Met. 81, 147 (1996).
[CrossRef]

Sasabe, H.

Y. Okada-Shudo, I. Yamaguchi, H. Tomoioka, and H. Sasabe, Synth. Met. 81, 147 (1996).
[CrossRef]

Seitz, A.

A. Seitz and N. Hampp, J. Phys. Chem. B 104, 7183 (2000).

Soskin, M. S.

N. M. Burykin, E. Y. Korchemskaya, M. S. Soskin, V. B. Taranenko, T. V. Djukova, and N. N. Vsevolodov, Opt. Commun. 2, 68 (1985).
[CrossRef]

Stoeckenius, W.

D. Oesterhelt and W. Stoeckenius, Nature New Biol. 233, 149 (1971).
[CrossRef]

Taranenko, V. B.

N. M. Burykin, E. Y. Korchemskaya, M. S. Soskin, V. B. Taranenko, T. V. Djukova, and N. N. Vsevolodov, Opt. Commun. 2, 68 (1985).
[CrossRef]

Thoma, R.

Tomoioka, H.

Y. Okada-Shudo, I. Yamaguchi, H. Tomoioka, and H. Sasabe, Synth. Met. 81, 147 (1996).
[CrossRef]

Vsevolodov, N. N.

N. M. Burykin, E. Y. Korchemskaya, M. S. Soskin, V. B. Taranenko, T. V. Djukova, and N. N. Vsevolodov, Opt. Commun. 2, 68 (1985).
[CrossRef]

Yamaguchi, I.

Y. Okada-Shudo, I. Yamaguchi, H. Tomoioka, and H. Sasabe, Synth. Met. 81, 147 (1996).
[CrossRef]

Zeisel, D.

D. Zeisel and N. Hampp, J. Phys. Chem. 96, 7788 (1992).

Chem. Rev.

N. Hampp, Chem. Rev. 100, 1755 (2000).
[CrossRef]

J. Phys. Chem.

D. Zeisel and N. Hampp, J. Phys. Chem. 96, 7788 (1992).

J. Phys. Chem. B

A. Seitz and N. Hampp, J. Phys. Chem. B 104, 7183 (2000).

Nature New Biol.

D. Oesterhelt and W. Stoeckenius, Nature New Biol. 233, 149 (1971).
[CrossRef]

Opt. Commun.

N. M. Burykin, E. Y. Korchemskaya, M. S. Soskin, V. B. Taranenko, T. V. Djukova, and N. N. Vsevolodov, Opt. Commun. 2, 68 (1985).
[CrossRef]

Opt. Lett.

Synth. Met.

Y. Okada-Shudo, I. Yamaguchi, H. Tomoioka, and H. Sasabe, Synth. Met. 81, 147 (1996).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

(A) Simplified two-state photocycle model of BR. (B) Numerically computed spectral relation between the light-induced changes in absorption (Δ OD; solid curve) and refractive index (Δn, dashed curve) of BR films.

Fig. 2
Fig. 2

Experimental setup for polarization-sensitive transient optical storage, readout, and computing with a reflective BR module: PFs, polarizing filters; BEs, beam expanders; M’s, mirrors; SH, shutter; other abbreviations defined in text.

Fig. 3
Fig. 3

Time dependence of the p component of the 676-nm signal beam on the intensity of 532-nm actinic light and its numerical simulation for selected intensities (dotted curves).

Fig. 4
Fig. 4

Anisotropy photoinduced in BR films on illumination to linearly polarized green light, which results in a dependence of the population distribution between the B and the M states on angle as well as on time. For linearly polarized 532-nm light with an intensity of 5 mW/cm2 the angular population distributions after 0.5, 2.5, 5, 10, 20, 50, 100, 150, and 300 s are numerically calculated. The correlated anisotropy in the refractive-index changes causes a rotation of the 676-nm detection light that is incident at angle φ=45°. A polarizer adjusted perpendicularly to the 676-nm polarization (315°) detects the induced p component only. First a fast increase of the signal is observed, which then decays to a much lower steady-state value.

Fig. 5
Fig. 5

Incoherent optical processing with a BR module. (A) Pattern displayed on a LCD SLM and transferred to the BR module by 532-nm linearly polarized light. Photoinduced anisotropy was detected by nondestructive 676 nm readout light. (B) Schematic of the polarization of the green writing and the 676-nm reading light. (C) Inversion of the signal in all positions (circle) where 413-nm blue light is collinear with the polarization of the 532-nm recording beam that is incident upon the BR module. (D) Similar (B) but with added blue light. (For further definitions, see text).

Tables (1)

Tables Icon

Table 1 Truth table for the Optical XOR Achieved with a BR Module

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

Δnθ,tMθ,t=B0k1k1+k41-exp-k1+k4t, k1=ϵB532ΦBI532cos2 θ+β sin2 θ, k4=1/τM,
Mθ,=B0ϵBΦBI532FθϵBΦBI532Fθ+1/τM,

Metrics