Abstract

The scaling properties of polarization mode dispersion (PMD) in spun fibers are studied. Simple equations have been obtained to describe the scaling properties of spun fibers as a function of intrinsic fiber birefringence, spin parameters, and mode-coupling length under both optimal and nonoptimal spin conditions. In particular, a counterintuitive result is found for fibers with perfect spin optimization, in which case the fiber PMD increases as the mode-coupling length is shortened. The results are verified with direct numerical modeling.

© 2002 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. D. Poole, Opt. Lett. 13, 687 (1988).
    [CrossRef]
  2. F. Curti, B. Daino, G. D. Marchis, and F. Matera, J. Lightwave Technol. 8, 1162 (1990).
    [CrossRef]
  3. G. J. Foschini and C. D. Poole, J. Lightwave Technol. 9, 1439 (1991).
    [CrossRef]
  4. N. Gisin, J.-P. Von der Weid, and J.-P. Pellaux, J. Lightwave Technol. 9, 821 (1991).
    [CrossRef]
  5. A. C. Hart, R. G. Huff, and K. L. Walker, “Method of making a fiber having low polarization mode dispersion due to a permant spin,” U.S. patent5,298,047 (March29, 1994).
  6. M. J. Li and D. A. Nolan, Opt. Lett. 23, 1659 (1998).
    [CrossRef]
  7. R. E. Schuh, X. Shan, and A. S. Siddiqui, J. Lightwave Technol. 16, 1583 (1998).
    [CrossRef]
  8. X. Chen, M.-J. Li, and D. A. Nolan, Opt. Lett. 27, 294 (2002).
    [CrossRef]

2002 (1)

1998 (2)

1991 (2)

G. J. Foschini and C. D. Poole, J. Lightwave Technol. 9, 1439 (1991).
[CrossRef]

N. Gisin, J.-P. Von der Weid, and J.-P. Pellaux, J. Lightwave Technol. 9, 821 (1991).
[CrossRef]

1990 (1)

F. Curti, B. Daino, G. D. Marchis, and F. Matera, J. Lightwave Technol. 8, 1162 (1990).
[CrossRef]

1988 (1)

Chen, X.

Curti, F.

F. Curti, B. Daino, G. D. Marchis, and F. Matera, J. Lightwave Technol. 8, 1162 (1990).
[CrossRef]

Daino, B.

F. Curti, B. Daino, G. D. Marchis, and F. Matera, J. Lightwave Technol. 8, 1162 (1990).
[CrossRef]

Foschini, G. J.

G. J. Foschini and C. D. Poole, J. Lightwave Technol. 9, 1439 (1991).
[CrossRef]

Gisin, N.

N. Gisin, J.-P. Von der Weid, and J.-P. Pellaux, J. Lightwave Technol. 9, 821 (1991).
[CrossRef]

Hart, A. C.

A. C. Hart, R. G. Huff, and K. L. Walker, “Method of making a fiber having low polarization mode dispersion due to a permant spin,” U.S. patent5,298,047 (March29, 1994).

Huff, R. G.

A. C. Hart, R. G. Huff, and K. L. Walker, “Method of making a fiber having low polarization mode dispersion due to a permant spin,” U.S. patent5,298,047 (March29, 1994).

Li, M. J.

Li, M.-J.

Marchis, G. D.

F. Curti, B. Daino, G. D. Marchis, and F. Matera, J. Lightwave Technol. 8, 1162 (1990).
[CrossRef]

Matera, F.

F. Curti, B. Daino, G. D. Marchis, and F. Matera, J. Lightwave Technol. 8, 1162 (1990).
[CrossRef]

Nolan, D. A.

Pellaux, J.-P.

N. Gisin, J.-P. Von der Weid, and J.-P. Pellaux, J. Lightwave Technol. 9, 821 (1991).
[CrossRef]

Poole, C. D.

G. J. Foschini and C. D. Poole, J. Lightwave Technol. 9, 1439 (1991).
[CrossRef]

C. D. Poole, Opt. Lett. 13, 687 (1988).
[CrossRef]

Schuh, R. E.

Shan, X.

Siddiqui, A. S.

Von der Weid, J.-P.

N. Gisin, J.-P. Von der Weid, and J.-P. Pellaux, J. Lightwave Technol. 9, 821 (1991).
[CrossRef]

Walker, K. L.

A. C. Hart, R. G. Huff, and K. L. Walker, “Method of making a fiber having low polarization mode dispersion due to a permant spin,” U.S. patent5,298,047 (March29, 1994).

J. Lightwave Technol. (4)

F. Curti, B. Daino, G. D. Marchis, and F. Matera, J. Lightwave Technol. 8, 1162 (1990).
[CrossRef]

G. J. Foschini and C. D. Poole, J. Lightwave Technol. 9, 1439 (1991).
[CrossRef]

N. Gisin, J.-P. Von der Weid, and J.-P. Pellaux, J. Lightwave Technol. 9, 821 (1991).
[CrossRef]

R. E. Schuh, X. Shan, and A. S. Siddiqui, J. Lightwave Technol. 16, 1583 (1998).
[CrossRef]

Opt. Lett. (3)

Other (1)

A. C. Hart, R. G. Huff, and K. L. Walker, “Method of making a fiber having low polarization mode dispersion due to a permant spin,” U.S. patent5,298,047 (March29, 1994).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (2)

Fig. 1
Fig. 1

DGD of a spun fiber as a function of fiber length. Spin magnitude, 3.5 turns/m; spin period, 1.0 m; fiber beat length, 10.0 m; mode-coupling length, 10.0 m.

Fig. 2
Fig. 2

(a) DGD of a spun fiber as a function of fiber length. (b) DGD of a spun fiber as a function of mode-coupling length for a fixed fiber length of 500 m. In both cases, the fibers are under a phase-matching condition in which α0=4.32 turns/m, η=2π, and the fiber beat length is 10.0 m. In (a) h=0.5 m.

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

τz=γω0zexp-2iΘzdz,
τz=κγωz=J02α0/ηλ/cLbz,
τl=κγωhl=J02α0/ηλ/cLbhl.
Qθn,ϕn,φn=RϕnPφnR-1ϕnRθn,
Rδ=cosδsinδ-sinδcosδ, Pφ=exp-iφ/200expiφ/2;
τz=γωΩΔβ2z2+4α0ΩsinΩz221/2,
τl=κγωhl=ΔβγωhlΔβ2+4α021/2.
τl=ϵl/h.

Metrics