Abstract

Using numerical simulations of vector radiative transport, we examine time-resolved backscattering of circularly polarized plane waves normally incident upon a slab containing a random distribution of latex spheres in water. For large spheres the effect of polarization memory occurs a short time after first-order scattering and before depolarization. It is the result of successive near-forward-scattering events that maintain the incident wave’s helicity. For moderately large scatterers it exhibits a simple dependence on the anisotropy factor. For larger spheres or those with higher refractive indices, it also depends on complicated angular and polarization characteristics of backscattering given by Mie theory.

© 2002 Optical Society of America

Full Article  |  PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (4)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription