Abstract

Using numerical simulations of vector radiative transport, we examine time-resolved backscattering of circularly polarized plane waves normally incident upon a slab containing a random distribution of latex spheres in water. For large spheres the effect of polarization memory occurs a short time after first-order scattering and before depolarization. It is the result of successive near-forward-scattering events that maintain the incident wave’s helicity. For moderately large scatterers it exhibits a simple dependence on the anisotropy factor. For larger spheres or those with higher refractive indices, it also depends on complicated angular and polarization characteristics of backscattering given by Mie theory.

© 2002 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. F. C. MacKintosh, J. X. Zhu, D. J. Pine, and D. A. Weitz, Phys. Rev. B 40, 9342 (1989).
    [CrossRef]
  2. D. Bicout, C. Brosseau, A. S. Martinez, and J. M. Schmitt, Phys. Rev. B 49, 1767 (1994).
  3. E. E. Gorodnichev, A. I. Kuzovlev, and D. B. Rogozkin, JETP Lett. 68, 22 (1998).
    [CrossRef]
  4. A. D. Kim and M. Moscoso, Phys. Rev. E 64, 026612 (2001).
    [CrossRef]
  5. A. D. Kim and M. Moscoso, SIAM J. Comput. Sci. 23, 2075 (2002).
    [CrossRef]
  6. A. Ishimaru, S. Jaruwatanadilok, and Y. Kuga, Appl. Opt. 40, 5495 (2001).
    [CrossRef]
  7. E. E. Gorodnichev, A. I. Kuzovlev, and D. B. Rogozkin, JETP 88, 421 (1999).
    [CrossRef]
  8. E. E. Gorodnichev, A. I. Kuzovlev, and D. B. Rogozkin, Laser Phys. 9, 1210 (1999).

2002 (1)

A. D. Kim and M. Moscoso, SIAM J. Comput. Sci. 23, 2075 (2002).
[CrossRef]

2001 (2)

1999 (2)

E. E. Gorodnichev, A. I. Kuzovlev, and D. B. Rogozkin, JETP 88, 421 (1999).
[CrossRef]

E. E. Gorodnichev, A. I. Kuzovlev, and D. B. Rogozkin, Laser Phys. 9, 1210 (1999).

1998 (1)

E. E. Gorodnichev, A. I. Kuzovlev, and D. B. Rogozkin, JETP Lett. 68, 22 (1998).
[CrossRef]

1994 (1)

D. Bicout, C. Brosseau, A. S. Martinez, and J. M. Schmitt, Phys. Rev. B 49, 1767 (1994).

1989 (1)

F. C. MacKintosh, J. X. Zhu, D. J. Pine, and D. A. Weitz, Phys. Rev. B 40, 9342 (1989).
[CrossRef]

Bicout, D.

D. Bicout, C. Brosseau, A. S. Martinez, and J. M. Schmitt, Phys. Rev. B 49, 1767 (1994).

Brosseau, C.

D. Bicout, C. Brosseau, A. S. Martinez, and J. M. Schmitt, Phys. Rev. B 49, 1767 (1994).

Gorodnichev, E. E.

E. E. Gorodnichev, A. I. Kuzovlev, and D. B. Rogozkin, Laser Phys. 9, 1210 (1999).

E. E. Gorodnichev, A. I. Kuzovlev, and D. B. Rogozkin, JETP 88, 421 (1999).
[CrossRef]

E. E. Gorodnichev, A. I. Kuzovlev, and D. B. Rogozkin, JETP Lett. 68, 22 (1998).
[CrossRef]

Ishimaru, A.

Jaruwatanadilok, S.

Kim, A. D.

A. D. Kim and M. Moscoso, SIAM J. Comput. Sci. 23, 2075 (2002).
[CrossRef]

A. D. Kim and M. Moscoso, Phys. Rev. E 64, 026612 (2001).
[CrossRef]

Kuga, Y.

Kuzovlev, A. I.

E. E. Gorodnichev, A. I. Kuzovlev, and D. B. Rogozkin, Laser Phys. 9, 1210 (1999).

E. E. Gorodnichev, A. I. Kuzovlev, and D. B. Rogozkin, JETP 88, 421 (1999).
[CrossRef]

E. E. Gorodnichev, A. I. Kuzovlev, and D. B. Rogozkin, JETP Lett. 68, 22 (1998).
[CrossRef]

MacKintosh, F. C.

F. C. MacKintosh, J. X. Zhu, D. J. Pine, and D. A. Weitz, Phys. Rev. B 40, 9342 (1989).
[CrossRef]

Martinez, A. S.

D. Bicout, C. Brosseau, A. S. Martinez, and J. M. Schmitt, Phys. Rev. B 49, 1767 (1994).

Moscoso, M.

A. D. Kim and M. Moscoso, SIAM J. Comput. Sci. 23, 2075 (2002).
[CrossRef]

A. D. Kim and M. Moscoso, Phys. Rev. E 64, 026612 (2001).
[CrossRef]

Pine, D. J.

F. C. MacKintosh, J. X. Zhu, D. J. Pine, and D. A. Weitz, Phys. Rev. B 40, 9342 (1989).
[CrossRef]

Rogozkin, D. B.

E. E. Gorodnichev, A. I. Kuzovlev, and D. B. Rogozkin, JETP 88, 421 (1999).
[CrossRef]

E. E. Gorodnichev, A. I. Kuzovlev, and D. B. Rogozkin, Laser Phys. 9, 1210 (1999).

E. E. Gorodnichev, A. I. Kuzovlev, and D. B. Rogozkin, JETP Lett. 68, 22 (1998).
[CrossRef]

Schmitt, J. M.

D. Bicout, C. Brosseau, A. S. Martinez, and J. M. Schmitt, Phys. Rev. B 49, 1767 (1994).

Weitz, D. A.

F. C. MacKintosh, J. X. Zhu, D. J. Pine, and D. A. Weitz, Phys. Rev. B 40, 9342 (1989).
[CrossRef]

Zhu, J. X.

F. C. MacKintosh, J. X. Zhu, D. J. Pine, and D. A. Weitz, Phys. Rev. B 40, 9342 (1989).
[CrossRef]

Appl. Opt. (1)

JETP (1)

E. E. Gorodnichev, A. I. Kuzovlev, and D. B. Rogozkin, JETP 88, 421 (1999).
[CrossRef]

JETP Lett. (1)

E. E. Gorodnichev, A. I. Kuzovlev, and D. B. Rogozkin, JETP Lett. 68, 22 (1998).
[CrossRef]

Laser Phys. (1)

E. E. Gorodnichev, A. I. Kuzovlev, and D. B. Rogozkin, Laser Phys. 9, 1210 (1999).

Phys. Rev. B (2)

F. C. MacKintosh, J. X. Zhu, D. J. Pine, and D. A. Weitz, Phys. Rev. B 40, 9342 (1989).
[CrossRef]

D. Bicout, C. Brosseau, A. S. Martinez, and J. M. Schmitt, Phys. Rev. B 49, 1767 (1994).

Phys. Rev. E (1)

A. D. Kim and M. Moscoso, Phys. Rev. E 64, 026612 (2001).
[CrossRef]

SIAM J. Comput. Sci. (1)

A. D. Kim and M. Moscoso, SIAM J. Comput. Sci. 23, 2075 (2002).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Backscattered flux as a function of time for spheres with ka= (a) 1.0, (b) 2.5, (c) 4.0. Time is normalized by c/L, where c is the constant wave speed and L is the length of the slab. The incident wave is a left-handed circularly polarized pulse of width 0.01L/c. The insets in (b) and (c) show details on a shorter time scale near t=0.

Fig. 2
Fig. 2

Peak time tpeak of the left-handed circularly polarized component as a function of anisotropy factor g and its least-squares fit to a quadradic in g ctpeak/lo380.23g2-559.23g+212.23. These times are normalized by lo/c, where lo is the scattering mean free path.

Fig. 3
Fig. 3

Stokes parameter V computed by Mie theory for m=1.19 and m=1.40 plotted as a function of the cosine of scattering angle Θ for backscattering. Three sphere sizes are plotted: ka=3.0, 4.0, 5.0.

Fig. 4
Fig. 4

Same as Fig. 1 for (a) m=1.19 and ka=9.24 and (b) m=1.40 and ka=5.28.

Metrics