Abstract

We propose a new mechanism for constructing waveguide intersections with broad bandwidth and low cross talk in photonic crystal (PC) circuits. The intersections are created by combination of coupled-cavity waveguides (CCWs) with conventional line-defect waveguides. This mechanism utilizes the strong dependence of the defect coupling on the field pattern in the defects and the alignment of the defects (i.e., the coupling angle) in CCWs. By properly designing the defect mode, we demonstrate through numerical simulation the establishment of such a waveguide intersection in one of the most useful PCs, which is based on a two-dimensional triangular lattice of air holes made in a dielectric material. The transmission of a 500-fs pulse at 1.3 µm is simulated by use of the finite-difference time-domain method, showing negligible distortion and low cross talk.

© 2002 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. G. Johnson, C. Manolatou, S. Fan, P. R. Villeneuve, J. D. Joannopoulos, and H. A. Haus, Opt. Lett. 23, 1855 (1998).
    [CrossRef]
  2. See, for example, M. Bayindir, B. Temelkuran, and E. Ozbay, Phys. Rev. Lett. 84, 2140 (2000).
    [CrossRef] [PubMed]
  3. S. Noda, A. Chutinan, and M. Imada, Nature 407, 608 (2000).
    [CrossRef] [PubMed]
  4. S. Y. Lin, E. Chow, S. G. Johnson, and J. D. Joannopoulos, Opt. Lett. 25, 1297 (2000).
    [CrossRef]
  5. C. J. M. Smith, R. M. De La Rue, M. Rattier, S. Olivier, H. Benisty, C. Weisbuch, T. F. Krauss, R. Houdre, and U. Oesterle, Appl. Phys. Lett. 78, 1487 (2001).
    [CrossRef]
  6. A. Chutinan and S. Noda, Phys. Rev. B 62, 4488 (2000).
    [CrossRef]
  7. M. Qiu, K. Azizi, A. Karlsson, M. Swillo, and B. Jaskorzynska, Phys. Rev. B 64, 155113 (2001).
    [CrossRef]
  8. The FDTD simulation was carried out with the FullWave package, developed by the Rsoft Design Group, Inc.
  9. O. Painter, J. Vučković, and A. Scherer, J. Opt. Soc. Am. B 16, 275 (1999).
    [CrossRef]
  10. Here multimode defect means that the defect creates more than one resonant mode in the bandgap. See, for example, P. R. Villeneuve, S. Fan, and J. D. Joannopoulos, Phys. Rev. B 54, 7837 (1996).
    [CrossRef]
  11. A. Yariv, Y. Xu, R. K. Lee, and A. Scherer, Opt. Lett. 24, 711 (1999).
    [CrossRef]
  12. T. D. Happ, M. Kamp, and A. Forchel, Opt. Lett. 26, 1102 (2001).
    [CrossRef]

2001 (3)

C. J. M. Smith, R. M. De La Rue, M. Rattier, S. Olivier, H. Benisty, C. Weisbuch, T. F. Krauss, R. Houdre, and U. Oesterle, Appl. Phys. Lett. 78, 1487 (2001).
[CrossRef]

M. Qiu, K. Azizi, A. Karlsson, M. Swillo, and B. Jaskorzynska, Phys. Rev. B 64, 155113 (2001).
[CrossRef]

T. D. Happ, M. Kamp, and A. Forchel, Opt. Lett. 26, 1102 (2001).
[CrossRef]

2000 (4)

A. Chutinan and S. Noda, Phys. Rev. B 62, 4488 (2000).
[CrossRef]

See, for example, M. Bayindir, B. Temelkuran, and E. Ozbay, Phys. Rev. Lett. 84, 2140 (2000).
[CrossRef] [PubMed]

S. Noda, A. Chutinan, and M. Imada, Nature 407, 608 (2000).
[CrossRef] [PubMed]

S. Y. Lin, E. Chow, S. G. Johnson, and J. D. Joannopoulos, Opt. Lett. 25, 1297 (2000).
[CrossRef]

1999 (2)

1998 (1)

1996 (1)

Here multimode defect means that the defect creates more than one resonant mode in the bandgap. See, for example, P. R. Villeneuve, S. Fan, and J. D. Joannopoulos, Phys. Rev. B 54, 7837 (1996).
[CrossRef]

Azizi, K.

M. Qiu, K. Azizi, A. Karlsson, M. Swillo, and B. Jaskorzynska, Phys. Rev. B 64, 155113 (2001).
[CrossRef]

Bayindir, M.

See, for example, M. Bayindir, B. Temelkuran, and E. Ozbay, Phys. Rev. Lett. 84, 2140 (2000).
[CrossRef] [PubMed]

Benisty, H.

C. J. M. Smith, R. M. De La Rue, M. Rattier, S. Olivier, H. Benisty, C. Weisbuch, T. F. Krauss, R. Houdre, and U. Oesterle, Appl. Phys. Lett. 78, 1487 (2001).
[CrossRef]

Chow, E.

Chutinan, A.

S. Noda, A. Chutinan, and M. Imada, Nature 407, 608 (2000).
[CrossRef] [PubMed]

A. Chutinan and S. Noda, Phys. Rev. B 62, 4488 (2000).
[CrossRef]

De La Rue, R. M.

C. J. M. Smith, R. M. De La Rue, M. Rattier, S. Olivier, H. Benisty, C. Weisbuch, T. F. Krauss, R. Houdre, and U. Oesterle, Appl. Phys. Lett. 78, 1487 (2001).
[CrossRef]

Fan, S.

S. G. Johnson, C. Manolatou, S. Fan, P. R. Villeneuve, J. D. Joannopoulos, and H. A. Haus, Opt. Lett. 23, 1855 (1998).
[CrossRef]

Here multimode defect means that the defect creates more than one resonant mode in the bandgap. See, for example, P. R. Villeneuve, S. Fan, and J. D. Joannopoulos, Phys. Rev. B 54, 7837 (1996).
[CrossRef]

Forchel, A.

Happ, T. D.

Haus, H. A.

Houdre, R.

C. J. M. Smith, R. M. De La Rue, M. Rattier, S. Olivier, H. Benisty, C. Weisbuch, T. F. Krauss, R. Houdre, and U. Oesterle, Appl. Phys. Lett. 78, 1487 (2001).
[CrossRef]

Imada, M.

S. Noda, A. Chutinan, and M. Imada, Nature 407, 608 (2000).
[CrossRef] [PubMed]

Jaskorzynska, B.

M. Qiu, K. Azizi, A. Karlsson, M. Swillo, and B. Jaskorzynska, Phys. Rev. B 64, 155113 (2001).
[CrossRef]

Joannopoulos, J. D.

S. Y. Lin, E. Chow, S. G. Johnson, and J. D. Joannopoulos, Opt. Lett. 25, 1297 (2000).
[CrossRef]

S. G. Johnson, C. Manolatou, S. Fan, P. R. Villeneuve, J. D. Joannopoulos, and H. A. Haus, Opt. Lett. 23, 1855 (1998).
[CrossRef]

Here multimode defect means that the defect creates more than one resonant mode in the bandgap. See, for example, P. R. Villeneuve, S. Fan, and J. D. Joannopoulos, Phys. Rev. B 54, 7837 (1996).
[CrossRef]

Johnson, S. G.

Kamp, M.

Karlsson, A.

M. Qiu, K. Azizi, A. Karlsson, M. Swillo, and B. Jaskorzynska, Phys. Rev. B 64, 155113 (2001).
[CrossRef]

Krauss, T. F.

C. J. M. Smith, R. M. De La Rue, M. Rattier, S. Olivier, H. Benisty, C. Weisbuch, T. F. Krauss, R. Houdre, and U. Oesterle, Appl. Phys. Lett. 78, 1487 (2001).
[CrossRef]

Lee, R. K.

Lin, S. Y.

Manolatou, C.

Noda, S.

S. Noda, A. Chutinan, and M. Imada, Nature 407, 608 (2000).
[CrossRef] [PubMed]

A. Chutinan and S. Noda, Phys. Rev. B 62, 4488 (2000).
[CrossRef]

Oesterle, U.

C. J. M. Smith, R. M. De La Rue, M. Rattier, S. Olivier, H. Benisty, C. Weisbuch, T. F. Krauss, R. Houdre, and U. Oesterle, Appl. Phys. Lett. 78, 1487 (2001).
[CrossRef]

Olivier, S.

C. J. M. Smith, R. M. De La Rue, M. Rattier, S. Olivier, H. Benisty, C. Weisbuch, T. F. Krauss, R. Houdre, and U. Oesterle, Appl. Phys. Lett. 78, 1487 (2001).
[CrossRef]

Ozbay, E.

See, for example, M. Bayindir, B. Temelkuran, and E. Ozbay, Phys. Rev. Lett. 84, 2140 (2000).
[CrossRef] [PubMed]

Painter, O.

Qiu, M.

M. Qiu, K. Azizi, A. Karlsson, M. Swillo, and B. Jaskorzynska, Phys. Rev. B 64, 155113 (2001).
[CrossRef]

Rattier, M.

C. J. M. Smith, R. M. De La Rue, M. Rattier, S. Olivier, H. Benisty, C. Weisbuch, T. F. Krauss, R. Houdre, and U. Oesterle, Appl. Phys. Lett. 78, 1487 (2001).
[CrossRef]

Scherer, A.

Smith, C. J. M.

C. J. M. Smith, R. M. De La Rue, M. Rattier, S. Olivier, H. Benisty, C. Weisbuch, T. F. Krauss, R. Houdre, and U. Oesterle, Appl. Phys. Lett. 78, 1487 (2001).
[CrossRef]

Swillo, M.

M. Qiu, K. Azizi, A. Karlsson, M. Swillo, and B. Jaskorzynska, Phys. Rev. B 64, 155113 (2001).
[CrossRef]

Temelkuran, B.

See, for example, M. Bayindir, B. Temelkuran, and E. Ozbay, Phys. Rev. Lett. 84, 2140 (2000).
[CrossRef] [PubMed]

Villeneuve, P. R.

S. G. Johnson, C. Manolatou, S. Fan, P. R. Villeneuve, J. D. Joannopoulos, and H. A. Haus, Opt. Lett. 23, 1855 (1998).
[CrossRef]

Here multimode defect means that the defect creates more than one resonant mode in the bandgap. See, for example, P. R. Villeneuve, S. Fan, and J. D. Joannopoulos, Phys. Rev. B 54, 7837 (1996).
[CrossRef]

Vuckovic, J.

Weisbuch, C.

C. J. M. Smith, R. M. De La Rue, M. Rattier, S. Olivier, H. Benisty, C. Weisbuch, T. F. Krauss, R. Houdre, and U. Oesterle, Appl. Phys. Lett. 78, 1487 (2001).
[CrossRef]

Xu, Y.

Yariv, A.

Appl. Phys. Lett. (1)

C. J. M. Smith, R. M. De La Rue, M. Rattier, S. Olivier, H. Benisty, C. Weisbuch, T. F. Krauss, R. Houdre, and U. Oesterle, Appl. Phys. Lett. 78, 1487 (2001).
[CrossRef]

J. Opt. Soc. Am. B (1)

Nature (1)

S. Noda, A. Chutinan, and M. Imada, Nature 407, 608 (2000).
[CrossRef] [PubMed]

Opt. Lett. (4)

Phys. Rev. B (3)

Here multimode defect means that the defect creates more than one resonant mode in the bandgap. See, for example, P. R. Villeneuve, S. Fan, and J. D. Joannopoulos, Phys. Rev. B 54, 7837 (1996).
[CrossRef]

A. Chutinan and S. Noda, Phys. Rev. B 62, 4488 (2000).
[CrossRef]

M. Qiu, K. Azizi, A. Karlsson, M. Swillo, and B. Jaskorzynska, Phys. Rev. B 64, 155113 (2001).
[CrossRef]

Phys. Rev. Lett. (1)

See, for example, M. Bayindir, B. Temelkuran, and E. Ozbay, Phys. Rev. Lett. 84, 2140 (2000).
[CrossRef] [PubMed]

Other (1)

The FDTD simulation was carried out with the FullWave package, developed by the Rsoft Design Group, Inc.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Various structures constructed in a 2D PC composed of a triangular lattice of air holes made in a dielectric material (e.g., GaAs). (a) Single defect inserted in a line-defect waveguide. The defect and the waveguide are created by complete removal of an air hole and a row of air holes, respectively. (b) CCW built in a line-defect waveguide, i.e., a hybrid waveguide. (c) Intersection of two hybrid waveguides.

Fig. 2
Fig. 2

(a) Transmission spectrum for the single defect shown in Fig. 1(a). The field distributions for (b) #1, (c) #2, and (d) #3 defect modes in an area marked in Fig. 1(a) by dashed lines.

Fig. 3
Fig. 3

Transmission properties of the waveguide intersection in the wavelength regions corresponding to the three defect modes. (a) #1 defect mode, (b) #2 defect mode, and (c) #3 defect mode. The transmittance is given by the solid curves, and the leakages are shown by the dashed and dotted curves.

Fig. 4
Fig. 4

Transmission of the #2 impurity band and the inverse of cross talk for the waveguide intersection. The cross-hatched area shows the wavelength region with high transmission and low cross talk.

Fig. 5
Fig. 5

Transmission of a 500-fs pulse centered at the 1.306µm wavelength through the waveguide intersection shown in Fig. 1(c).

Metrics