Abstract

A high-power picosecond optical parametric oscillator (OPO) based on a 47-mm periodically poled lithium niobate crystal is described. More than 12 W of total average power—almost 8 W of signal power at 1.85 µm and more than 4 W of idler radiation at 2.5 µm—is simultaneously extracted from less than 18 W of average pump power. The OPO is synchronously pumped by 80-ps (FWHM) cw mode-locked pulses at 1.064 µm, and its output is tunable from 1.7 to 2.84 µm. Nearly transform-limited signal pulses are obtained following the introduction of two intracavity etalons.

© 2002 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. B. Ruffing, A. Nebel, and R. Wallenstein, Appl. Phys. B 72, 137 (2001).
    [CrossRef]
  2. T. W. Tukker, C. Otto, and J. Greve, Opt. Commun. 154, 83 (1998).
    [CrossRef]
  3. C. Grasser, D. Wang, R. Beigang, and R. Wallenstein, J. Opt. Soc. Am. B 10, 2218 (1993).
    [CrossRef]
  4. B. Ruffing, A. Nebel, and R. Wallenstein, Appl. Phys. B 67, 537 (1998).
    [CrossRef]
  5. M. Ebrahimzadeh and M. H. Dunn, in Handbook of Optics IV, M. Bass, J. M. Enoch, E. W. Van Stryland, and W. L. Wolfe, eds. (McGraw-Hill, New York, 2000), pp. 2201–2272.
  6. W. R. Bosenberg, A. D. Drobshoff, J. I. Alexander, L. E. Myers, and R. L. Byer, Opt. Lett. 21, 1336 (1996).
    [CrossRef] [PubMed]
  7. W. R. Bosenberg, J. I. Alexander, L. E. Myers, and R. W. Wallace, Opt. Lett. 23, 207 (1998).
    [CrossRef]
  8. M. E. Dearborn, K. Koch, G. T. Moore, and J. C. Diels, Opt. Lett. 23, 759 (1998).
    [CrossRef]
  9. K. Finsterbusch, R. Urschel, and H. Zacharias, Appl. Phys. B 70, 741 (2000).
    [CrossRef]
  10. S. Guha, F.-J. Wu, and J. Falk, IEEE J. Quantum Electron. QE-18, 907 (1982).
    [CrossRef]
  11. K. Puech, L. Lefort, and D. C. Hanna, J. Opt. Soc. Am. B 16, 1533 (1999).
    [CrossRef]
  12. C. W. Hoyt, M. Sheik-Bahae, R. I. Epstein, B. C. Edwards, and J. E. Anderson, Phys. Rev. Lett. 85, 3600 (2000).
    [CrossRef] [PubMed]

2001 (1)

B. Ruffing, A. Nebel, and R. Wallenstein, Appl. Phys. B 72, 137 (2001).
[CrossRef]

2000 (2)

K. Finsterbusch, R. Urschel, and H. Zacharias, Appl. Phys. B 70, 741 (2000).
[CrossRef]

C. W. Hoyt, M. Sheik-Bahae, R. I. Epstein, B. C. Edwards, and J. E. Anderson, Phys. Rev. Lett. 85, 3600 (2000).
[CrossRef] [PubMed]

1999 (1)

1998 (4)

1996 (1)

1993 (1)

1982 (1)

S. Guha, F.-J. Wu, and J. Falk, IEEE J. Quantum Electron. QE-18, 907 (1982).
[CrossRef]

Alexander, J. I.

Anderson, J. E.

C. W. Hoyt, M. Sheik-Bahae, R. I. Epstein, B. C. Edwards, and J. E. Anderson, Phys. Rev. Lett. 85, 3600 (2000).
[CrossRef] [PubMed]

Beigang, R.

Bosenberg, W. R.

Byer, R. L.

Dearborn, M. E.

Diels, J. C.

Drobshoff, A. D.

Dunn, M. H.

M. Ebrahimzadeh and M. H. Dunn, in Handbook of Optics IV, M. Bass, J. M. Enoch, E. W. Van Stryland, and W. L. Wolfe, eds. (McGraw-Hill, New York, 2000), pp. 2201–2272.

Ebrahimzadeh, M.

M. Ebrahimzadeh and M. H. Dunn, in Handbook of Optics IV, M. Bass, J. M. Enoch, E. W. Van Stryland, and W. L. Wolfe, eds. (McGraw-Hill, New York, 2000), pp. 2201–2272.

Edwards, B. C.

C. W. Hoyt, M. Sheik-Bahae, R. I. Epstein, B. C. Edwards, and J. E. Anderson, Phys. Rev. Lett. 85, 3600 (2000).
[CrossRef] [PubMed]

Epstein, R. I.

C. W. Hoyt, M. Sheik-Bahae, R. I. Epstein, B. C. Edwards, and J. E. Anderson, Phys. Rev. Lett. 85, 3600 (2000).
[CrossRef] [PubMed]

Falk, J.

S. Guha, F.-J. Wu, and J. Falk, IEEE J. Quantum Electron. QE-18, 907 (1982).
[CrossRef]

Finsterbusch, K.

K. Finsterbusch, R. Urschel, and H. Zacharias, Appl. Phys. B 70, 741 (2000).
[CrossRef]

Grasser, C.

Greve, J.

T. W. Tukker, C. Otto, and J. Greve, Opt. Commun. 154, 83 (1998).
[CrossRef]

Guha, S.

S. Guha, F.-J. Wu, and J. Falk, IEEE J. Quantum Electron. QE-18, 907 (1982).
[CrossRef]

Hanna, D. C.

Hoyt, C. W.

C. W. Hoyt, M. Sheik-Bahae, R. I. Epstein, B. C. Edwards, and J. E. Anderson, Phys. Rev. Lett. 85, 3600 (2000).
[CrossRef] [PubMed]

Koch, K.

Lefort, L.

Moore, G. T.

Myers, L. E.

Nebel, A.

B. Ruffing, A. Nebel, and R. Wallenstein, Appl. Phys. B 72, 137 (2001).
[CrossRef]

B. Ruffing, A. Nebel, and R. Wallenstein, Appl. Phys. B 67, 537 (1998).
[CrossRef]

Otto, C.

T. W. Tukker, C. Otto, and J. Greve, Opt. Commun. 154, 83 (1998).
[CrossRef]

Puech, K.

Ruffing, B.

B. Ruffing, A. Nebel, and R. Wallenstein, Appl. Phys. B 72, 137 (2001).
[CrossRef]

B. Ruffing, A. Nebel, and R. Wallenstein, Appl. Phys. B 67, 537 (1998).
[CrossRef]

Sheik-Bahae, M.

C. W. Hoyt, M. Sheik-Bahae, R. I. Epstein, B. C. Edwards, and J. E. Anderson, Phys. Rev. Lett. 85, 3600 (2000).
[CrossRef] [PubMed]

Tukker, T. W.

T. W. Tukker, C. Otto, and J. Greve, Opt. Commun. 154, 83 (1998).
[CrossRef]

Urschel, R.

K. Finsterbusch, R. Urschel, and H. Zacharias, Appl. Phys. B 70, 741 (2000).
[CrossRef]

Wallace, R. W.

Wallenstein, R.

B. Ruffing, A. Nebel, and R. Wallenstein, Appl. Phys. B 72, 137 (2001).
[CrossRef]

B. Ruffing, A. Nebel, and R. Wallenstein, Appl. Phys. B 67, 537 (1998).
[CrossRef]

C. Grasser, D. Wang, R. Beigang, and R. Wallenstein, J. Opt. Soc. Am. B 10, 2218 (1993).
[CrossRef]

Wang, D.

Wu, F.-J.

S. Guha, F.-J. Wu, and J. Falk, IEEE J. Quantum Electron. QE-18, 907 (1982).
[CrossRef]

Zacharias, H.

K. Finsterbusch, R. Urschel, and H. Zacharias, Appl. Phys. B 70, 741 (2000).
[CrossRef]

Appl. Phys. B (3)

B. Ruffing, A. Nebel, and R. Wallenstein, Appl. Phys. B 72, 137 (2001).
[CrossRef]

B. Ruffing, A. Nebel, and R. Wallenstein, Appl. Phys. B 67, 537 (1998).
[CrossRef]

K. Finsterbusch, R. Urschel, and H. Zacharias, Appl. Phys. B 70, 741 (2000).
[CrossRef]

IEEE J. Quantum Electron. (1)

S. Guha, F.-J. Wu, and J. Falk, IEEE J. Quantum Electron. QE-18, 907 (1982).
[CrossRef]

J. Opt. Soc. Am. B (2)

Opt. Commun. (1)

T. W. Tukker, C. Otto, and J. Greve, Opt. Commun. 154, 83 (1998).
[CrossRef]

Opt. Lett. (3)

Phys. Rev. Lett. (1)

C. W. Hoyt, M. Sheik-Bahae, R. I. Epstein, B. C. Edwards, and J. E. Anderson, Phys. Rev. Lett. 85, 3600 (2000).
[CrossRef] [PubMed]

Other (1)

M. Ebrahimzadeh and M. H. Dunn, in Handbook of Optics IV, M. Bass, J. M. Enoch, E. W. Van Stryland, and W. L. Wolfe, eds. (McGraw-Hill, New York, 2000), pp. 2201–2272.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Asymmetric gamma-cavity OPO. The output coupler is highly reflecting for the idler and highly transmitting for the signal. All other mirrors are highly reflecting for both signal and idler and highly transmitting for the pump. Fresnel reflections from a transparent window at a finite angle are used to couple idler radiation from the cavity. We obtain high-power, nearly transform-limited pulses by replacing the transparent window with two dielectric-coated glass etalons, as shown in the inset.

Fig. 2
Fig. 2

Tuning curves for three quasi-phase-matching periods of the 47-mm PPLN crystal. Points show periods of 31.2, 31.3, and 30.95 µm. Solid curves show the corresponding theoretical tuning curves.

Fig. 3
Fig. 3

Pump depletion and output powers as functions of average input pump power before the crystal for optimum intracavity loss for the idler. Open triangles, idler; open circles, signal; open squares, total extracted power. Slope efficiencies are 28%, 46%, and 74%, respectively. Solid diamonds, pump depletion.

Fig. 4
Fig. 4

Output powers as functions of round-trip intracavity loss for the idler owing to the insertion of a glass window in the arm containing mirror M4 (see Fig. 1). Circles, signal power extracted from the output coupler; triangles, total idler power extracted from the glass window; filled squares, total extracted power. The highest loss is obtained by use of a glass wedge in place of mirror M4.

Metrics