Abstract

Ophthalmic instrumentation equipped with adaptive optics offers the possibility of rapid and automated correction of the eye’s optics for improving vision and for improving images of the retina. One factor that limits the widespread implementation of adaptive optics is the cost of the wave-front corrector, such as a deformable mirror. In addition, the large apertures of these elements require high pupil magnification, and hence the systems tend to be physically large. We present what are believed to be the first closed-loop results when a compact, low-cost, surface micromachined, microelectromechanical mirror is used in a vision adaptive-optics system. The correction performance of the mirror is shown to be comparable to that of a Xinetics mirror for a 4.6-mm pupil size. Furthermore, for a pupil diameter of 6.0-mm, the residual rms error is reduced from 0.36 to 0.12 µm and individual photoreceptors are resolved at a pupil eccentricity of 1° from the fovea.

© 2002 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. W. Dreher, J. F. Bille, and R. N. Weinreb, Appl. Opt. 28, 804 (1989).
    [CrossRef] [PubMed]
  2. J. Liang, D. R. Williams, and D. T. Miller, J. Opt. Soc. Am. A 14, 2884 (1997).
    [CrossRef]
  3. F. Vargas-Martin, P. M. Prieto, and P. Artal, J. Opt. Soc. Am. A 15, 2552 (1998).
    [CrossRef]
  4. G. V. Vdovin and P. M. Sarro, Appl. Opt. 34, 2968 (1995).
    [CrossRef] [PubMed]
  5. E. J. Fernandez, I. Iglesias, and P. Artal, Opt. Lett. 26, 746 (2001).
    [CrossRef]
  6. H. Hofer, L. Chen, G. Y. Yoon, B. Singer, Y. Yamauchi, and D. R. Williams, Opt. Express 8, 631 (2001), www.opticsexpress.org .
    [CrossRef] [PubMed]
  7. T. G. Bifano, J. Perreault, R. Krishnamoorthy-Mali, and M. N. Horenstein, IEEE J. Sel. Top. Quantum Electron. 5, 83 (1999).
    [CrossRef]
  8. M. A. Helmbrecht, U. Srinivasan, C. Rembe, R. T. Howe, and R. S. Muller, in Proceedings of the 11th International Conference on Solid State Sensors and Actuators (Springer, New York, 2001), pp. 1290–1293.
  9. P. Kurczynski, A. J. Tyson, B. Sadoulet, D. J. Bishop, and D. R. Williams, Proc. SPIE 4561, 147 (2001).
    [CrossRef]
  10. D. W. de Lima Montiero, G. Vdovin, and M. Loktev, presented at the 3rd International Conference on the Use of AO for Industry and Medicine, Albuquerque, N.M., July 23–26, 2001.

2001

1999

T. G. Bifano, J. Perreault, R. Krishnamoorthy-Mali, and M. N. Horenstein, IEEE J. Sel. Top. Quantum Electron. 5, 83 (1999).
[CrossRef]

1998

1997

1995

1989

Artal, P.

Bifano, T. G.

T. G. Bifano, J. Perreault, R. Krishnamoorthy-Mali, and M. N. Horenstein, IEEE J. Sel. Top. Quantum Electron. 5, 83 (1999).
[CrossRef]

Bille, J. F.

Bishop, D. J.

P. Kurczynski, A. J. Tyson, B. Sadoulet, D. J. Bishop, and D. R. Williams, Proc. SPIE 4561, 147 (2001).
[CrossRef]

Chen, L.

de Lima Montiero, D. W.

D. W. de Lima Montiero, G. Vdovin, and M. Loktev, presented at the 3rd International Conference on the Use of AO for Industry and Medicine, Albuquerque, N.M., July 23–26, 2001.

Dreher, A. W.

Fernandez, E. J.

Helmbrecht, M. A.

M. A. Helmbrecht, U. Srinivasan, C. Rembe, R. T. Howe, and R. S. Muller, in Proceedings of the 11th International Conference on Solid State Sensors and Actuators (Springer, New York, 2001), pp. 1290–1293.

Hofer, H.

Horenstein, M. N.

T. G. Bifano, J. Perreault, R. Krishnamoorthy-Mali, and M. N. Horenstein, IEEE J. Sel. Top. Quantum Electron. 5, 83 (1999).
[CrossRef]

Howe, R. T.

M. A. Helmbrecht, U. Srinivasan, C. Rembe, R. T. Howe, and R. S. Muller, in Proceedings of the 11th International Conference on Solid State Sensors and Actuators (Springer, New York, 2001), pp. 1290–1293.

Iglesias, I.

Krishnamoorthy-Mali, R.

T. G. Bifano, J. Perreault, R. Krishnamoorthy-Mali, and M. N. Horenstein, IEEE J. Sel. Top. Quantum Electron. 5, 83 (1999).
[CrossRef]

Kurczynski, P.

P. Kurczynski, A. J. Tyson, B. Sadoulet, D. J. Bishop, and D. R. Williams, Proc. SPIE 4561, 147 (2001).
[CrossRef]

Liang, J.

Loktev, M.

D. W. de Lima Montiero, G. Vdovin, and M. Loktev, presented at the 3rd International Conference on the Use of AO for Industry and Medicine, Albuquerque, N.M., July 23–26, 2001.

Miller, D. T.

Muller, R. S.

M. A. Helmbrecht, U. Srinivasan, C. Rembe, R. T. Howe, and R. S. Muller, in Proceedings of the 11th International Conference on Solid State Sensors and Actuators (Springer, New York, 2001), pp. 1290–1293.

Perreault, J.

T. G. Bifano, J. Perreault, R. Krishnamoorthy-Mali, and M. N. Horenstein, IEEE J. Sel. Top. Quantum Electron. 5, 83 (1999).
[CrossRef]

Prieto, P. M.

Rembe, C.

M. A. Helmbrecht, U. Srinivasan, C. Rembe, R. T. Howe, and R. S. Muller, in Proceedings of the 11th International Conference on Solid State Sensors and Actuators (Springer, New York, 2001), pp. 1290–1293.

Sadoulet, B.

P. Kurczynski, A. J. Tyson, B. Sadoulet, D. J. Bishop, and D. R. Williams, Proc. SPIE 4561, 147 (2001).
[CrossRef]

Sarro, P. M.

Singer, B.

Srinivasan, U.

M. A. Helmbrecht, U. Srinivasan, C. Rembe, R. T. Howe, and R. S. Muller, in Proceedings of the 11th International Conference on Solid State Sensors and Actuators (Springer, New York, 2001), pp. 1290–1293.

Tyson, A. J.

P. Kurczynski, A. J. Tyson, B. Sadoulet, D. J. Bishop, and D. R. Williams, Proc. SPIE 4561, 147 (2001).
[CrossRef]

Vargas-Martin, F.

Vdovin, G.

D. W. de Lima Montiero, G. Vdovin, and M. Loktev, presented at the 3rd International Conference on the Use of AO for Industry and Medicine, Albuquerque, N.M., July 23–26, 2001.

Vdovin, G. V.

Weinreb, R. N.

Williams, D. R.

Yamauchi, Y.

Yoon, G. Y.

Appl. Opt.

IEEE J. Sel. Top. Quantum Electron.

T. G. Bifano, J. Perreault, R. Krishnamoorthy-Mali, and M. N. Horenstein, IEEE J. Sel. Top. Quantum Electron. 5, 83 (1999).
[CrossRef]

J. Opt. Soc. Am. A

Opt. Express

Opt. Lett.

Proc. SPIE

P. Kurczynski, A. J. Tyson, B. Sadoulet, D. J. Bishop, and D. R. Williams, Proc. SPIE 4561, 147 (2001).
[CrossRef]

Other

D. W. de Lima Montiero, G. Vdovin, and M. Loktev, presented at the 3rd International Conference on the Use of AO for Industry and Medicine, Albuquerque, N.M., July 23–26, 2001.

M. A. Helmbrecht, U. Srinivasan, C. Rembe, R. T. Howe, and R. S. Muller, in Proceedings of the 11th International Conference on Solid State Sensors and Actuators (Springer, New York, 2001), pp. 1290–1293.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Rochester AO system incorporating a BMC MEMS breadboard. 50-mm focal-length collimating lenses were used to obtain an incident half-angle onto the MEMS mirror of 15° with a beam diameter of 2.8 mm. SLD, superluminescent diode; BSs, beam splitters; HS, Hartmann–Shack; WFS, wave-front sensor.

Fig. 2
Fig. 2

Results of correcting a 4.6-mm pupil for four subjects, AP, GYY, HH, and ND, each over 10 trials. Xinetics mirror (XIN) results were not obtained for subject ND. All experimental conditions were the same in each case.

Fig. 3
Fig. 3

Before and after AO correction with the BMC MEMS mirror for a 6.8-mm pupil. Defocus was corrected before both measurements. An average of 10 trials was used. P-V, peak to valley.

Fig. 4
Fig. 4

Images of the human retina at an eccentricity of 1° before (left) and after (right) AO correction. Photoreceptors are clearly visible in the corrected image. Each result is a registered sum of six images. The field of view is 0.3°, corresponding to 75 µm on the retina (horizontal dimension).

Tables (1)

Tables Icon

Table 1 Comparison of the Xinetics DM and the BMC MEMS Mirror

Metrics