Abstract

We design and fabricate a new taper structure for adiabatic mode transformation in two-dimensional photonic-crystal waveguides patterned into a GaInAsP confining layer. The taper efficiency is validated by measurement of a reduction of the reflection between an access ridge and a photonic-crystal guide with one missing row from 6% to less than 1%. This taper is then incorporated into a 60° bend; simulations demonstrate a 90% transmission between multimode ports.

© 2002 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Talneau, L. Le Gouezigou, and N. Bouadma, Opt. Lett. 26, 1259 (2001).
    [CrossRef]
  2. S. Olivier, C. Smith, M. Rattier, H. Benisty, C. Weisbuch, T. Krauss, R. Houdré, and U. Oesterlé, Opt. Lett. 26, 1019 (2001).
    [CrossRef]
  3. S. Olivier, H. Benisty, C. Weisbuch, M. Qiu, A. Karlsson, C. J. M. Smith, R. Houdré, and U. Osterlé, Appl. Phys. Lett. 79, 2514 (2001).
    [CrossRef]
  4. T. Baba, N. Fukaya, and J. Yonekura, Electron. Lett. 35, 654 (1999).
    [CrossRef]
  5. A. Talneau, L. Le Gouezigou, N. Bouadma, M. Kafesaki, C. M. Soukoulis, and M. Agio, Appl. Phys. Lett. 80, 547 (2002).
    [CrossRef]
  6. M. Lončar, D. Nedeljkovic, T. Doll, J. Vuckovic, A. Schere, and T. P. Pearsall, Appl. Phys. Lett. 77, 1937 (2000).
    [CrossRef]
  7. E. Chow, S. Y. Lin, J. R. Wendt, S. G. Johnson, and D. J. Joannopoulos, Opt. Lett. 26, 286 (2001).
    [CrossRef]
  8. H. Kosaka, T. Kawashima, A. Tomina, T. Sato, and S. Kawakami, Appl. Phys. Lett. 76, 268 (2000).
    [CrossRef]
  9. Ph. Lalanne and A. Talneau, “Strucutre à cristal photonique pour la conversion de mode,” French patent 0115057 (November 21, 2001).
  10. M. Palamaru and Ph. Lalanne, Appl. Phys. Lett. 78, 1466 (2001).
    [CrossRef]
  11. Ph. Lalanne and A. Talneau, Opt. Express 10, 354 (2002) ; www.opticsexpress.org.
    [CrossRef] [PubMed]
  12. A. Mekis, S. Fan, and J. D. Joannopoulos, J. Lightwave Technol. 19, 861 (2001).
    [CrossRef]
  13. Y. Xu, R. K. Lee, and A. Yariv, Opt. Lett. 25, 755 (2000).
    [CrossRef]
  14. A. Mekis, S. Fan, and J. D. Joannopoulos, Phys. Rev. B 58, 4809 (1998).
    [CrossRef]
  15. A. Tavlove, Computational Electrodynamics: The Finite-Difference Time-Domain Method (Artech House, Norwood, Mass., 1995).
  16. The peak transmission is 95%. The less-than-100% transmission is probably due to the mismatch between the rectangular Finite-difference time-domain mesh and the sixfold symmetry of the PC lattice. The two sections of the PCW are not equivalent in the numerical simulation.
  17. A. Chutinan, M. Okano, and S. Noda, Appl. Phys. Lett. 80, 1698 (2002).
    [CrossRef]

2002

A. Talneau, L. Le Gouezigou, N. Bouadma, M. Kafesaki, C. M. Soukoulis, and M. Agio, Appl. Phys. Lett. 80, 547 (2002).
[CrossRef]

A. Chutinan, M. Okano, and S. Noda, Appl. Phys. Lett. 80, 1698 (2002).
[CrossRef]

Ph. Lalanne and A. Talneau, Opt. Express 10, 354 (2002) ; www.opticsexpress.org.
[CrossRef] [PubMed]

2001

2000

M. Lončar, D. Nedeljkovic, T. Doll, J. Vuckovic, A. Schere, and T. P. Pearsall, Appl. Phys. Lett. 77, 1937 (2000).
[CrossRef]

H. Kosaka, T. Kawashima, A. Tomina, T. Sato, and S. Kawakami, Appl. Phys. Lett. 76, 268 (2000).
[CrossRef]

Y. Xu, R. K. Lee, and A. Yariv, Opt. Lett. 25, 755 (2000).
[CrossRef]

1999

T. Baba, N. Fukaya, and J. Yonekura, Electron. Lett. 35, 654 (1999).
[CrossRef]

1998

A. Mekis, S. Fan, and J. D. Joannopoulos, Phys. Rev. B 58, 4809 (1998).
[CrossRef]

Agio, M.

A. Talneau, L. Le Gouezigou, N. Bouadma, M. Kafesaki, C. M. Soukoulis, and M. Agio, Appl. Phys. Lett. 80, 547 (2002).
[CrossRef]

Baba, T.

T. Baba, N. Fukaya, and J. Yonekura, Electron. Lett. 35, 654 (1999).
[CrossRef]

Benisty, H.

S. Olivier, C. Smith, M. Rattier, H. Benisty, C. Weisbuch, T. Krauss, R. Houdré, and U. Oesterlé, Opt. Lett. 26, 1019 (2001).
[CrossRef]

S. Olivier, H. Benisty, C. Weisbuch, M. Qiu, A. Karlsson, C. J. M. Smith, R. Houdré, and U. Osterlé, Appl. Phys. Lett. 79, 2514 (2001).
[CrossRef]

Bouadma, N.

A. Talneau, L. Le Gouezigou, N. Bouadma, M. Kafesaki, C. M. Soukoulis, and M. Agio, Appl. Phys. Lett. 80, 547 (2002).
[CrossRef]

A. Talneau, L. Le Gouezigou, and N. Bouadma, Opt. Lett. 26, 1259 (2001).
[CrossRef]

Chow, E.

Chutinan, A.

A. Chutinan, M. Okano, and S. Noda, Appl. Phys. Lett. 80, 1698 (2002).
[CrossRef]

Doll, T.

M. Lončar, D. Nedeljkovic, T. Doll, J. Vuckovic, A. Schere, and T. P. Pearsall, Appl. Phys. Lett. 77, 1937 (2000).
[CrossRef]

Fan, S.

A. Mekis, S. Fan, and J. D. Joannopoulos, J. Lightwave Technol. 19, 861 (2001).
[CrossRef]

A. Mekis, S. Fan, and J. D. Joannopoulos, Phys. Rev. B 58, 4809 (1998).
[CrossRef]

Fukaya, N.

T. Baba, N. Fukaya, and J. Yonekura, Electron. Lett. 35, 654 (1999).
[CrossRef]

Houdré, R.

S. Olivier, C. Smith, M. Rattier, H. Benisty, C. Weisbuch, T. Krauss, R. Houdré, and U. Oesterlé, Opt. Lett. 26, 1019 (2001).
[CrossRef]

S. Olivier, H. Benisty, C. Weisbuch, M. Qiu, A. Karlsson, C. J. M. Smith, R. Houdré, and U. Osterlé, Appl. Phys. Lett. 79, 2514 (2001).
[CrossRef]

Joannopoulos, D. J.

Joannopoulos, J. D.

A. Mekis, S. Fan, and J. D. Joannopoulos, J. Lightwave Technol. 19, 861 (2001).
[CrossRef]

A. Mekis, S. Fan, and J. D. Joannopoulos, Phys. Rev. B 58, 4809 (1998).
[CrossRef]

Johnson, S. G.

Kafesaki, M.

A. Talneau, L. Le Gouezigou, N. Bouadma, M. Kafesaki, C. M. Soukoulis, and M. Agio, Appl. Phys. Lett. 80, 547 (2002).
[CrossRef]

Karlsson, A.

S. Olivier, H. Benisty, C. Weisbuch, M. Qiu, A. Karlsson, C. J. M. Smith, R. Houdré, and U. Osterlé, Appl. Phys. Lett. 79, 2514 (2001).
[CrossRef]

Kawakami, S.

H. Kosaka, T. Kawashima, A. Tomina, T. Sato, and S. Kawakami, Appl. Phys. Lett. 76, 268 (2000).
[CrossRef]

Kawashima, T.

H. Kosaka, T. Kawashima, A. Tomina, T. Sato, and S. Kawakami, Appl. Phys. Lett. 76, 268 (2000).
[CrossRef]

Kosaka, H.

H. Kosaka, T. Kawashima, A. Tomina, T. Sato, and S. Kawakami, Appl. Phys. Lett. 76, 268 (2000).
[CrossRef]

Krauss, T.

Lalanne, Ph.

Ph. Lalanne and A. Talneau, Opt. Express 10, 354 (2002) ; www.opticsexpress.org.
[CrossRef] [PubMed]

M. Palamaru and Ph. Lalanne, Appl. Phys. Lett. 78, 1466 (2001).
[CrossRef]

Ph. Lalanne and A. Talneau, “Strucutre à cristal photonique pour la conversion de mode,” French patent 0115057 (November 21, 2001).

Le Gouezigou, L.

A. Talneau, L. Le Gouezigou, N. Bouadma, M. Kafesaki, C. M. Soukoulis, and M. Agio, Appl. Phys. Lett. 80, 547 (2002).
[CrossRef]

A. Talneau, L. Le Gouezigou, and N. Bouadma, Opt. Lett. 26, 1259 (2001).
[CrossRef]

Lee, R. K.

Lin, S. Y.

Loncar, M.

M. Lončar, D. Nedeljkovic, T. Doll, J. Vuckovic, A. Schere, and T. P. Pearsall, Appl. Phys. Lett. 77, 1937 (2000).
[CrossRef]

Mekis, A.

A. Mekis, S. Fan, and J. D. Joannopoulos, J. Lightwave Technol. 19, 861 (2001).
[CrossRef]

A. Mekis, S. Fan, and J. D. Joannopoulos, Phys. Rev. B 58, 4809 (1998).
[CrossRef]

Nedeljkovic, D.

M. Lončar, D. Nedeljkovic, T. Doll, J. Vuckovic, A. Schere, and T. P. Pearsall, Appl. Phys. Lett. 77, 1937 (2000).
[CrossRef]

Noda, S.

A. Chutinan, M. Okano, and S. Noda, Appl. Phys. Lett. 80, 1698 (2002).
[CrossRef]

Oesterlé, U.

Okano, M.

A. Chutinan, M. Okano, and S. Noda, Appl. Phys. Lett. 80, 1698 (2002).
[CrossRef]

Olivier, S.

S. Olivier, H. Benisty, C. Weisbuch, M. Qiu, A. Karlsson, C. J. M. Smith, R. Houdré, and U. Osterlé, Appl. Phys. Lett. 79, 2514 (2001).
[CrossRef]

S. Olivier, C. Smith, M. Rattier, H. Benisty, C. Weisbuch, T. Krauss, R. Houdré, and U. Oesterlé, Opt. Lett. 26, 1019 (2001).
[CrossRef]

Osterlé, U.

S. Olivier, H. Benisty, C. Weisbuch, M. Qiu, A. Karlsson, C. J. M. Smith, R. Houdré, and U. Osterlé, Appl. Phys. Lett. 79, 2514 (2001).
[CrossRef]

Palamaru, M.

M. Palamaru and Ph. Lalanne, Appl. Phys. Lett. 78, 1466 (2001).
[CrossRef]

Pearsall, T. P.

M. Lončar, D. Nedeljkovic, T. Doll, J. Vuckovic, A. Schere, and T. P. Pearsall, Appl. Phys. Lett. 77, 1937 (2000).
[CrossRef]

Qiu, M.

S. Olivier, H. Benisty, C. Weisbuch, M. Qiu, A. Karlsson, C. J. M. Smith, R. Houdré, and U. Osterlé, Appl. Phys. Lett. 79, 2514 (2001).
[CrossRef]

Rattier, M.

Sato, T.

H. Kosaka, T. Kawashima, A. Tomina, T. Sato, and S. Kawakami, Appl. Phys. Lett. 76, 268 (2000).
[CrossRef]

Schere, A.

M. Lončar, D. Nedeljkovic, T. Doll, J. Vuckovic, A. Schere, and T. P. Pearsall, Appl. Phys. Lett. 77, 1937 (2000).
[CrossRef]

Smith, C.

Smith, C. J. M.

S. Olivier, H. Benisty, C. Weisbuch, M. Qiu, A. Karlsson, C. J. M. Smith, R. Houdré, and U. Osterlé, Appl. Phys. Lett. 79, 2514 (2001).
[CrossRef]

Soukoulis, C. M.

A. Talneau, L. Le Gouezigou, N. Bouadma, M. Kafesaki, C. M. Soukoulis, and M. Agio, Appl. Phys. Lett. 80, 547 (2002).
[CrossRef]

Talneau, A.

A. Talneau, L. Le Gouezigou, N. Bouadma, M. Kafesaki, C. M. Soukoulis, and M. Agio, Appl. Phys. Lett. 80, 547 (2002).
[CrossRef]

Ph. Lalanne and A. Talneau, Opt. Express 10, 354 (2002) ; www.opticsexpress.org.
[CrossRef] [PubMed]

A. Talneau, L. Le Gouezigou, and N. Bouadma, Opt. Lett. 26, 1259 (2001).
[CrossRef]

Ph. Lalanne and A. Talneau, “Strucutre à cristal photonique pour la conversion de mode,” French patent 0115057 (November 21, 2001).

Tavlove, A.

A. Tavlove, Computational Electrodynamics: The Finite-Difference Time-Domain Method (Artech House, Norwood, Mass., 1995).

Tomina, A.

H. Kosaka, T. Kawashima, A. Tomina, T. Sato, and S. Kawakami, Appl. Phys. Lett. 76, 268 (2000).
[CrossRef]

Vuckovic, J.

M. Lončar, D. Nedeljkovic, T. Doll, J. Vuckovic, A. Schere, and T. P. Pearsall, Appl. Phys. Lett. 77, 1937 (2000).
[CrossRef]

Weisbuch, C.

S. Olivier, C. Smith, M. Rattier, H. Benisty, C. Weisbuch, T. Krauss, R. Houdré, and U. Oesterlé, Opt. Lett. 26, 1019 (2001).
[CrossRef]

S. Olivier, H. Benisty, C. Weisbuch, M. Qiu, A. Karlsson, C. J. M. Smith, R. Houdré, and U. Osterlé, Appl. Phys. Lett. 79, 2514 (2001).
[CrossRef]

Wendt, J. R.

Xu, Y.

Yariv, A.

Yonekura, J.

T. Baba, N. Fukaya, and J. Yonekura, Electron. Lett. 35, 654 (1999).
[CrossRef]

Appl. Phys. Lett.

A. Talneau, L. Le Gouezigou, N. Bouadma, M. Kafesaki, C. M. Soukoulis, and M. Agio, Appl. Phys. Lett. 80, 547 (2002).
[CrossRef]

Appl. Phys. Lett.

M. Lončar, D. Nedeljkovic, T. Doll, J. Vuckovic, A. Schere, and T. P. Pearsall, Appl. Phys. Lett. 77, 1937 (2000).
[CrossRef]

H. Kosaka, T. Kawashima, A. Tomina, T. Sato, and S. Kawakami, Appl. Phys. Lett. 76, 268 (2000).
[CrossRef]

M. Palamaru and Ph. Lalanne, Appl. Phys. Lett. 78, 1466 (2001).
[CrossRef]

A. Chutinan, M. Okano, and S. Noda, Appl. Phys. Lett. 80, 1698 (2002).
[CrossRef]

S. Olivier, H. Benisty, C. Weisbuch, M. Qiu, A. Karlsson, C. J. M. Smith, R. Houdré, and U. Osterlé, Appl. Phys. Lett. 79, 2514 (2001).
[CrossRef]

Electron. Lett.

T. Baba, N. Fukaya, and J. Yonekura, Electron. Lett. 35, 654 (1999).
[CrossRef]

J. Lightwave Technol.

Opt. Express

Opt. Lett.

Phys. Rev. B

A. Mekis, S. Fan, and J. D. Joannopoulos, Phys. Rev. B 58, 4809 (1998).
[CrossRef]

Other

A. Tavlove, Computational Electrodynamics: The Finite-Difference Time-Domain Method (Artech House, Norwood, Mass., 1995).

The peak transmission is 95%. The less-than-100% transmission is probably due to the mismatch between the rectangular Finite-difference time-domain mesh and the sixfold symmetry of the PC lattice. The two sections of the PCW are not equivalent in the numerical simulation.

Ph. Lalanne and A. Talneau, “Strucutre à cristal photonique pour la conversion de mode,” French patent 0115057 (November 21, 2001).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Scanning electron microscope picture of the tapering section.

Fig. 2
Fig. 2

Fourier-transformed spectra of the transmission spectra through W1 PCW (a) without a taper and (b) with one taper.

Fig. 3
Fig. 3

Dispersion relation for (a) W1-30% PCW and (b) W3 PCW. The solid (dashed) curves refer to even (odd) modes with respect to the waveguide axis. PC parameters: =10.5, f=40%, TE polarization. The gray areas represent the bulk PC modes.

Fig. 4
Fig. 4

Electric field through a tapered sharp bend connecting two W3 PCWs. PC parameters: =10.5, f=40%, TE polarization, a/λ=0.2515.

Metrics