Abstract

We investigate femtosecond-pulse propagation through large-core microstructured fibers. Although these fibers are highly multimode, excitation of the fundamental mode is readily achieved, and coupling to higher-order modes is weak even when the fiber is bent or twisted. For prechirped input pulses with energies as large as 3 nJ, pulses as short as 140 fs were produced at the output of the fiber. Such a system could prove to be extremely useful for applications such as in vivo multiphoton microscopy and endoscopy that require delivery of femtosecond pulses and collection of fluorescence.

© 2002 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Oberthaler and R. A. Hopfel, Appl. Phys. Lett. 63, 1017 (1993).
    [CrossRef]
  2. R. Williams, W. R. Zipfel, and W. W. Webb, Curr. Opin. Chem. Biol. 5, 603 (2001).
    [CrossRef] [PubMed]
  3. M. T. Myaing, J. Urayama, A. Braun, and T. B. Norris, Opt. Express 7, 210 (2000), http://www.opticsexpress.org.
    [CrossRef] [PubMed]
  4. B. W. Atherton and M. K. Reed, Proc. SPIE 3269, 22 (1998).
    [CrossRef]
  5. S. W. Clark, F. O. Ilday, and F. W. Wise, Opt. Lett. 26, 1320 (2001).
    [CrossRef]
  6. T. A. Birks, P. J. Roberts, P. St. J. Russell, D. M. Atkin, and T. J. Shepherd, Electron. Lett. 31, 1941 (1995).
    [CrossRef]
  7. J. C. Knight, J. Broeng, T. A. Birks, and P. St. J. Russell, Science 282, 1476 (1998).
    [CrossRef] [PubMed]
  8. J. K. Ranka, R. S. Windeler, and A. J. Stentz, Opt. Lett. 25, 796 (2001).
    [CrossRef]
  9. E. B. Treacy, IEEE J. Quantum Electron. QE-5, 454 (1969).
    [CrossRef]
  10. J. K. Ranka, A. L. Gaeta, A. Baltuska, M. S. Pshenichnikov, and D. A. Wiersma, Opt. Lett. 22, 1334 (1997).
    [CrossRef]

2001

2000

1998

B. W. Atherton and M. K. Reed, Proc. SPIE 3269, 22 (1998).
[CrossRef]

J. C. Knight, J. Broeng, T. A. Birks, and P. St. J. Russell, Science 282, 1476 (1998).
[CrossRef] [PubMed]

1997

J. K. Ranka, A. L. Gaeta, A. Baltuska, M. S. Pshenichnikov, and D. A. Wiersma, Opt. Lett. 22, 1334 (1997).
[CrossRef]

1995

T. A. Birks, P. J. Roberts, P. St. J. Russell, D. M. Atkin, and T. J. Shepherd, Electron. Lett. 31, 1941 (1995).
[CrossRef]

1993

M. Oberthaler and R. A. Hopfel, Appl. Phys. Lett. 63, 1017 (1993).
[CrossRef]

1969

E. B. Treacy, IEEE J. Quantum Electron. QE-5, 454 (1969).
[CrossRef]

Atherton, B. W.

B. W. Atherton and M. K. Reed, Proc. SPIE 3269, 22 (1998).
[CrossRef]

Atkin, D. M.

T. A. Birks, P. J. Roberts, P. St. J. Russell, D. M. Atkin, and T. J. Shepherd, Electron. Lett. 31, 1941 (1995).
[CrossRef]

Baltuska, A.

J. K. Ranka, A. L. Gaeta, A. Baltuska, M. S. Pshenichnikov, and D. A. Wiersma, Opt. Lett. 22, 1334 (1997).
[CrossRef]

Birks, T. A.

J. C. Knight, J. Broeng, T. A. Birks, and P. St. J. Russell, Science 282, 1476 (1998).
[CrossRef] [PubMed]

T. A. Birks, P. J. Roberts, P. St. J. Russell, D. M. Atkin, and T. J. Shepherd, Electron. Lett. 31, 1941 (1995).
[CrossRef]

Braun, A.

Broeng, J.

J. C. Knight, J. Broeng, T. A. Birks, and P. St. J. Russell, Science 282, 1476 (1998).
[CrossRef] [PubMed]

Clark, S. W.

Gaeta, A. L.

J. K. Ranka, A. L. Gaeta, A. Baltuska, M. S. Pshenichnikov, and D. A. Wiersma, Opt. Lett. 22, 1334 (1997).
[CrossRef]

Hopfel, R. A.

M. Oberthaler and R. A. Hopfel, Appl. Phys. Lett. 63, 1017 (1993).
[CrossRef]

Ilday, F. O.

Knight, J. C.

J. C. Knight, J. Broeng, T. A. Birks, and P. St. J. Russell, Science 282, 1476 (1998).
[CrossRef] [PubMed]

Myaing, M. T.

Norris, T. B.

Oberthaler, M.

M. Oberthaler and R. A. Hopfel, Appl. Phys. Lett. 63, 1017 (1993).
[CrossRef]

Pshenichnikov, M. S.

J. K. Ranka, A. L. Gaeta, A. Baltuska, M. S. Pshenichnikov, and D. A. Wiersma, Opt. Lett. 22, 1334 (1997).
[CrossRef]

Ranka, J. K.

J. K. Ranka, R. S. Windeler, and A. J. Stentz, Opt. Lett. 25, 796 (2001).
[CrossRef]

J. K. Ranka, A. L. Gaeta, A. Baltuska, M. S. Pshenichnikov, and D. A. Wiersma, Opt. Lett. 22, 1334 (1997).
[CrossRef]

Reed, M. K.

B. W. Atherton and M. K. Reed, Proc. SPIE 3269, 22 (1998).
[CrossRef]

Roberts, P. J.

T. A. Birks, P. J. Roberts, P. St. J. Russell, D. M. Atkin, and T. J. Shepherd, Electron. Lett. 31, 1941 (1995).
[CrossRef]

Russell, P. St. J.

J. C. Knight, J. Broeng, T. A. Birks, and P. St. J. Russell, Science 282, 1476 (1998).
[CrossRef] [PubMed]

T. A. Birks, P. J. Roberts, P. St. J. Russell, D. M. Atkin, and T. J. Shepherd, Electron. Lett. 31, 1941 (1995).
[CrossRef]

Shepherd, T. J.

T. A. Birks, P. J. Roberts, P. St. J. Russell, D. M. Atkin, and T. J. Shepherd, Electron. Lett. 31, 1941 (1995).
[CrossRef]

Stentz, A. J.

Treacy, E. B.

E. B. Treacy, IEEE J. Quantum Electron. QE-5, 454 (1969).
[CrossRef]

Urayama, J.

Webb, W. W.

R. Williams, W. R. Zipfel, and W. W. Webb, Curr. Opin. Chem. Biol. 5, 603 (2001).
[CrossRef] [PubMed]

Wiersma, D. A.

J. K. Ranka, A. L. Gaeta, A. Baltuska, M. S. Pshenichnikov, and D. A. Wiersma, Opt. Lett. 22, 1334 (1997).
[CrossRef]

Williams, R.

R. Williams, W. R. Zipfel, and W. W. Webb, Curr. Opin. Chem. Biol. 5, 603 (2001).
[CrossRef] [PubMed]

Windeler, R. S.

Wise, F. W.

Zipfel, W. R.

R. Williams, W. R. Zipfel, and W. W. Webb, Curr. Opin. Chem. Biol. 5, 603 (2001).
[CrossRef] [PubMed]

Appl. Phys. Lett.

M. Oberthaler and R. A. Hopfel, Appl. Phys. Lett. 63, 1017 (1993).
[CrossRef]

Curr. Opin. Chem. Biol.

R. Williams, W. R. Zipfel, and W. W. Webb, Curr. Opin. Chem. Biol. 5, 603 (2001).
[CrossRef] [PubMed]

Electron. Lett.

T. A. Birks, P. J. Roberts, P. St. J. Russell, D. M. Atkin, and T. J. Shepherd, Electron. Lett. 31, 1941 (1995).
[CrossRef]

IEEE J. Quantum Electron.

E. B. Treacy, IEEE J. Quantum Electron. QE-5, 454 (1969).
[CrossRef]

Opt. Express

Opt. Lett.

Proc. SPIE

B. W. Atherton and M. K. Reed, Proc. SPIE 3269, 22 (1998).
[CrossRef]

Science

J. C. Knight, J. Broeng, T. A. Birks, and P. St. J. Russell, Science 282, 1476 (1998).
[CrossRef] [PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Beam profile at the output of the microstructured fiber MF1: (a) digital camera photograph, (b) intensity distribution, (c) Gaussian fit of a cross section.

Fig. 2
Fig. 2

Intensity (a) autocorrelation and (b) spectrum of an output pulse for average power of 100 mW for MF1.

Fig. 3
Fig. 3

Measured width of the output pulses as a function of power for SMF (squares), MF1 (circles), and MF2 (triangles) and theoretical results (solid curves) for all three fibers.

Fig. 4
Fig. 4

Interferometric autocorrelation of the input pulse (gray) and the output pulse (black) from MF2 for a pulse energy of 3 nJ.

Metrics