Abstract

The use of integrated optical microcavities (MCs) for enhanced optical spectroscopy and sensing is investigated. The MC sustains high-Q whispering-gallery modes, in which the energy of the optical field can be efficiently stored. The resulting enhanced field can be used to probe fluorescent molecules in the cladding of the MC. Enhanced fluorescence excitation with an integrated optical MC is demonstrated experimentally for what is believed to be the first time. A comparison between a MC and a straight waveguide shows that the MC may give an increase of 40 times in fluorescence excitation. Because of the ultrasmall size of the MC (15 µm in radius), the fluorescence signal may be observed from only 20 molecules in the cladding.

© 2002 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. Srivastava, C. Bao, and C. Gomez-Reino, Sensors Actuators A 51, 165 (1996).
    [CrossRef]
  2. T. E. Plowman, S. S. Saavedra, and W. M. Reichert, Biomaterials 19, 341 (1998).
    [CrossRef] [PubMed]
  3. J. S. Kanger, C. Otto, M. Slotboom, and J. Greve, J. Phys. Chem. 100, 3288 (1996).
    [CrossRef]
  4. T. E. Plowman, W. M. Reichert, C. R. Peters, H. K. Wang, D. A. Christensen, and J. N. Herron, Biosens. Bioelectron. 11, 149 (1996).
    [CrossRef]
  5. T. E. Plowman, J. D. Durstchi, H. K. Wang, D. A. Christensen, J. N. Herron, and W. M. Reichert, Anal. Chem. 71, 4344 (1999).
    [CrossRef] [PubMed]
  6. R. K. Chang and A. J. Campillo, eds., Optical Processes in Microcavities (World Scientific, Singapore, 1996).
  7. J. F. Owen, P. W. Barber, P. B. Dorain, and R. K. Chang, Phys. Rev. Lett. 47, 1075 (1981).
    [CrossRef]
  8. E. Krioukov, D. J. W. Klunder, A. Driessen, J. Greve, and C. Otto, Opt. Lett. 27, 512 (2002).
    [CrossRef]
  9. S. Blair and Y. Chen, Appl. Opt. 40, 570 (2001).
    [CrossRef]
  10. D. J. W. Klunder, E. Krioukov, F. S. Tan, T. van der Veen, H. F. Bulthuis, G. Sengo, C. Otto, H. J. W. M. Hoekstra, and A. Driessen, Appl. Phys. B 73, 603 (2001).
    [CrossRef]
  11. B. J. Li and P. L. Liu, IEEE J. Quantum Electron. 32, 1583 (1996).
    [CrossRef]
  12. K. Wörhoff, A. Driessen, P. V. Lambeck, L. T. H. Hilderink, P. W. C. Linders, and Th. J. A. Popma, Sensors Actuators A 74, 9 (1999).
    [CrossRef]
  13. R. Philip, A. Penzkofer, W. Baumler, R. M. Szeimies, and C. Abels, J. Photochem. Photobiol. A 96, 137 (1996).
    [CrossRef]

2002 (1)

2001 (2)

S. Blair and Y. Chen, Appl. Opt. 40, 570 (2001).
[CrossRef]

D. J. W. Klunder, E. Krioukov, F. S. Tan, T. van der Veen, H. F. Bulthuis, G. Sengo, C. Otto, H. J. W. M. Hoekstra, and A. Driessen, Appl. Phys. B 73, 603 (2001).
[CrossRef]

1999 (2)

T. E. Plowman, J. D. Durstchi, H. K. Wang, D. A. Christensen, J. N. Herron, and W. M. Reichert, Anal. Chem. 71, 4344 (1999).
[CrossRef] [PubMed]

K. Wörhoff, A. Driessen, P. V. Lambeck, L. T. H. Hilderink, P. W. C. Linders, and Th. J. A. Popma, Sensors Actuators A 74, 9 (1999).
[CrossRef]

1998 (1)

T. E. Plowman, S. S. Saavedra, and W. M. Reichert, Biomaterials 19, 341 (1998).
[CrossRef] [PubMed]

1996 (5)

J. S. Kanger, C. Otto, M. Slotboom, and J. Greve, J. Phys. Chem. 100, 3288 (1996).
[CrossRef]

T. E. Plowman, W. M. Reichert, C. R. Peters, H. K. Wang, D. A. Christensen, and J. N. Herron, Biosens. Bioelectron. 11, 149 (1996).
[CrossRef]

B. J. Li and P. L. Liu, IEEE J. Quantum Electron. 32, 1583 (1996).
[CrossRef]

R. Philip, A. Penzkofer, W. Baumler, R. M. Szeimies, and C. Abels, J. Photochem. Photobiol. A 96, 137 (1996).
[CrossRef]

R. Srivastava, C. Bao, and C. Gomez-Reino, Sensors Actuators A 51, 165 (1996).
[CrossRef]

1981 (1)

J. F. Owen, P. W. Barber, P. B. Dorain, and R. K. Chang, Phys. Rev. Lett. 47, 1075 (1981).
[CrossRef]

Abels, C.

R. Philip, A. Penzkofer, W. Baumler, R. M. Szeimies, and C. Abels, J. Photochem. Photobiol. A 96, 137 (1996).
[CrossRef]

Bao, C.

R. Srivastava, C. Bao, and C. Gomez-Reino, Sensors Actuators A 51, 165 (1996).
[CrossRef]

Barber, P. W.

J. F. Owen, P. W. Barber, P. B. Dorain, and R. K. Chang, Phys. Rev. Lett. 47, 1075 (1981).
[CrossRef]

Baumler, W.

R. Philip, A. Penzkofer, W. Baumler, R. M. Szeimies, and C. Abels, J. Photochem. Photobiol. A 96, 137 (1996).
[CrossRef]

Blair, S.

Bulthuis, H. F.

D. J. W. Klunder, E. Krioukov, F. S. Tan, T. van der Veen, H. F. Bulthuis, G. Sengo, C. Otto, H. J. W. M. Hoekstra, and A. Driessen, Appl. Phys. B 73, 603 (2001).
[CrossRef]

Chang, R. K.

J. F. Owen, P. W. Barber, P. B. Dorain, and R. K. Chang, Phys. Rev. Lett. 47, 1075 (1981).
[CrossRef]

Chen, Y.

Christensen, D. A.

T. E. Plowman, J. D. Durstchi, H. K. Wang, D. A. Christensen, J. N. Herron, and W. M. Reichert, Anal. Chem. 71, 4344 (1999).
[CrossRef] [PubMed]

T. E. Plowman, W. M. Reichert, C. R. Peters, H. K. Wang, D. A. Christensen, and J. N. Herron, Biosens. Bioelectron. 11, 149 (1996).
[CrossRef]

Dorain, P. B.

J. F. Owen, P. W. Barber, P. B. Dorain, and R. K. Chang, Phys. Rev. Lett. 47, 1075 (1981).
[CrossRef]

Driessen, A.

E. Krioukov, D. J. W. Klunder, A. Driessen, J. Greve, and C. Otto, Opt. Lett. 27, 512 (2002).
[CrossRef]

D. J. W. Klunder, E. Krioukov, F. S. Tan, T. van der Veen, H. F. Bulthuis, G. Sengo, C. Otto, H. J. W. M. Hoekstra, and A. Driessen, Appl. Phys. B 73, 603 (2001).
[CrossRef]

K. Wörhoff, A. Driessen, P. V. Lambeck, L. T. H. Hilderink, P. W. C. Linders, and Th. J. A. Popma, Sensors Actuators A 74, 9 (1999).
[CrossRef]

Durstchi, J. D.

T. E. Plowman, J. D. Durstchi, H. K. Wang, D. A. Christensen, J. N. Herron, and W. M. Reichert, Anal. Chem. 71, 4344 (1999).
[CrossRef] [PubMed]

Gomez-Reino, C.

R. Srivastava, C. Bao, and C. Gomez-Reino, Sensors Actuators A 51, 165 (1996).
[CrossRef]

Greve, J.

E. Krioukov, D. J. W. Klunder, A. Driessen, J. Greve, and C. Otto, Opt. Lett. 27, 512 (2002).
[CrossRef]

J. S. Kanger, C. Otto, M. Slotboom, and J. Greve, J. Phys. Chem. 100, 3288 (1996).
[CrossRef]

Herron, J. N.

T. E. Plowman, J. D. Durstchi, H. K. Wang, D. A. Christensen, J. N. Herron, and W. M. Reichert, Anal. Chem. 71, 4344 (1999).
[CrossRef] [PubMed]

T. E. Plowman, W. M. Reichert, C. R. Peters, H. K. Wang, D. A. Christensen, and J. N. Herron, Biosens. Bioelectron. 11, 149 (1996).
[CrossRef]

Hilderink, L. T. H.

K. Wörhoff, A. Driessen, P. V. Lambeck, L. T. H. Hilderink, P. W. C. Linders, and Th. J. A. Popma, Sensors Actuators A 74, 9 (1999).
[CrossRef]

Hoekstra, H. J. W. M.

D. J. W. Klunder, E. Krioukov, F. S. Tan, T. van der Veen, H. F. Bulthuis, G. Sengo, C. Otto, H. J. W. M. Hoekstra, and A. Driessen, Appl. Phys. B 73, 603 (2001).
[CrossRef]

Kanger, J. S.

J. S. Kanger, C. Otto, M. Slotboom, and J. Greve, J. Phys. Chem. 100, 3288 (1996).
[CrossRef]

Klunder, D. J. W.

E. Krioukov, D. J. W. Klunder, A. Driessen, J. Greve, and C. Otto, Opt. Lett. 27, 512 (2002).
[CrossRef]

D. J. W. Klunder, E. Krioukov, F. S. Tan, T. van der Veen, H. F. Bulthuis, G. Sengo, C. Otto, H. J. W. M. Hoekstra, and A. Driessen, Appl. Phys. B 73, 603 (2001).
[CrossRef]

Krioukov, E.

E. Krioukov, D. J. W. Klunder, A. Driessen, J. Greve, and C. Otto, Opt. Lett. 27, 512 (2002).
[CrossRef]

D. J. W. Klunder, E. Krioukov, F. S. Tan, T. van der Veen, H. F. Bulthuis, G. Sengo, C. Otto, H. J. W. M. Hoekstra, and A. Driessen, Appl. Phys. B 73, 603 (2001).
[CrossRef]

Lambeck, P. V.

K. Wörhoff, A. Driessen, P. V. Lambeck, L. T. H. Hilderink, P. W. C. Linders, and Th. J. A. Popma, Sensors Actuators A 74, 9 (1999).
[CrossRef]

Li, B. J.

B. J. Li and P. L. Liu, IEEE J. Quantum Electron. 32, 1583 (1996).
[CrossRef]

Linders, P. W. C.

K. Wörhoff, A. Driessen, P. V. Lambeck, L. T. H. Hilderink, P. W. C. Linders, and Th. J. A. Popma, Sensors Actuators A 74, 9 (1999).
[CrossRef]

Liu, P. L.

B. J. Li and P. L. Liu, IEEE J. Quantum Electron. 32, 1583 (1996).
[CrossRef]

Otto, C.

E. Krioukov, D. J. W. Klunder, A. Driessen, J. Greve, and C. Otto, Opt. Lett. 27, 512 (2002).
[CrossRef]

D. J. W. Klunder, E. Krioukov, F. S. Tan, T. van der Veen, H. F. Bulthuis, G. Sengo, C. Otto, H. J. W. M. Hoekstra, and A. Driessen, Appl. Phys. B 73, 603 (2001).
[CrossRef]

J. S. Kanger, C. Otto, M. Slotboom, and J. Greve, J. Phys. Chem. 100, 3288 (1996).
[CrossRef]

Owen, J. F.

J. F. Owen, P. W. Barber, P. B. Dorain, and R. K. Chang, Phys. Rev. Lett. 47, 1075 (1981).
[CrossRef]

Penzkofer, A.

R. Philip, A. Penzkofer, W. Baumler, R. M. Szeimies, and C. Abels, J. Photochem. Photobiol. A 96, 137 (1996).
[CrossRef]

Peters, C. R.

T. E. Plowman, W. M. Reichert, C. R. Peters, H. K. Wang, D. A. Christensen, and J. N. Herron, Biosens. Bioelectron. 11, 149 (1996).
[CrossRef]

Philip, R.

R. Philip, A. Penzkofer, W. Baumler, R. M. Szeimies, and C. Abels, J. Photochem. Photobiol. A 96, 137 (1996).
[CrossRef]

Plowman, T. E.

T. E. Plowman, J. D. Durstchi, H. K. Wang, D. A. Christensen, J. N. Herron, and W. M. Reichert, Anal. Chem. 71, 4344 (1999).
[CrossRef] [PubMed]

T. E. Plowman, S. S. Saavedra, and W. M. Reichert, Biomaterials 19, 341 (1998).
[CrossRef] [PubMed]

T. E. Plowman, W. M. Reichert, C. R. Peters, H. K. Wang, D. A. Christensen, and J. N. Herron, Biosens. Bioelectron. 11, 149 (1996).
[CrossRef]

Popma, Th. J. A.

K. Wörhoff, A. Driessen, P. V. Lambeck, L. T. H. Hilderink, P. W. C. Linders, and Th. J. A. Popma, Sensors Actuators A 74, 9 (1999).
[CrossRef]

Reichert, W. M.

T. E. Plowman, J. D. Durstchi, H. K. Wang, D. A. Christensen, J. N. Herron, and W. M. Reichert, Anal. Chem. 71, 4344 (1999).
[CrossRef] [PubMed]

T. E. Plowman, S. S. Saavedra, and W. M. Reichert, Biomaterials 19, 341 (1998).
[CrossRef] [PubMed]

T. E. Plowman, W. M. Reichert, C. R. Peters, H. K. Wang, D. A. Christensen, and J. N. Herron, Biosens. Bioelectron. 11, 149 (1996).
[CrossRef]

Saavedra, S. S.

T. E. Plowman, S. S. Saavedra, and W. M. Reichert, Biomaterials 19, 341 (1998).
[CrossRef] [PubMed]

Sengo, G.

D. J. W. Klunder, E. Krioukov, F. S. Tan, T. van der Veen, H. F. Bulthuis, G. Sengo, C. Otto, H. J. W. M. Hoekstra, and A. Driessen, Appl. Phys. B 73, 603 (2001).
[CrossRef]

Slotboom, M.

J. S. Kanger, C. Otto, M. Slotboom, and J. Greve, J. Phys. Chem. 100, 3288 (1996).
[CrossRef]

Srivastava, R.

R. Srivastava, C. Bao, and C. Gomez-Reino, Sensors Actuators A 51, 165 (1996).
[CrossRef]

Szeimies, R. M.

R. Philip, A. Penzkofer, W. Baumler, R. M. Szeimies, and C. Abels, J. Photochem. Photobiol. A 96, 137 (1996).
[CrossRef]

Tan, F. S.

D. J. W. Klunder, E. Krioukov, F. S. Tan, T. van der Veen, H. F. Bulthuis, G. Sengo, C. Otto, H. J. W. M. Hoekstra, and A. Driessen, Appl. Phys. B 73, 603 (2001).
[CrossRef]

van der Veen, T.

D. J. W. Klunder, E. Krioukov, F. S. Tan, T. van der Veen, H. F. Bulthuis, G. Sengo, C. Otto, H. J. W. M. Hoekstra, and A. Driessen, Appl. Phys. B 73, 603 (2001).
[CrossRef]

Wang, H. K.

T. E. Plowman, J. D. Durstchi, H. K. Wang, D. A. Christensen, J. N. Herron, and W. M. Reichert, Anal. Chem. 71, 4344 (1999).
[CrossRef] [PubMed]

T. E. Plowman, W. M. Reichert, C. R. Peters, H. K. Wang, D. A. Christensen, and J. N. Herron, Biosens. Bioelectron. 11, 149 (1996).
[CrossRef]

Wörhoff, K.

K. Wörhoff, A. Driessen, P. V. Lambeck, L. T. H. Hilderink, P. W. C. Linders, and Th. J. A. Popma, Sensors Actuators A 74, 9 (1999).
[CrossRef]

Anal. Chem. (1)

T. E. Plowman, J. D. Durstchi, H. K. Wang, D. A. Christensen, J. N. Herron, and W. M. Reichert, Anal. Chem. 71, 4344 (1999).
[CrossRef] [PubMed]

Appl. Opt. (1)

Appl. Phys. B (1)

D. J. W. Klunder, E. Krioukov, F. S. Tan, T. van der Veen, H. F. Bulthuis, G. Sengo, C. Otto, H. J. W. M. Hoekstra, and A. Driessen, Appl. Phys. B 73, 603 (2001).
[CrossRef]

Biomaterials (1)

T. E. Plowman, S. S. Saavedra, and W. M. Reichert, Biomaterials 19, 341 (1998).
[CrossRef] [PubMed]

Biosens. Bioelectron. (1)

T. E. Plowman, W. M. Reichert, C. R. Peters, H. K. Wang, D. A. Christensen, and J. N. Herron, Biosens. Bioelectron. 11, 149 (1996).
[CrossRef]

IEEE J. Quantum Electron. (1)

B. J. Li and P. L. Liu, IEEE J. Quantum Electron. 32, 1583 (1996).
[CrossRef]

J. Photochem. Photobiol. A (1)

R. Philip, A. Penzkofer, W. Baumler, R. M. Szeimies, and C. Abels, J. Photochem. Photobiol. A 96, 137 (1996).
[CrossRef]

J. Phys. Chem. (1)

J. S. Kanger, C. Otto, M. Slotboom, and J. Greve, J. Phys. Chem. 100, 3288 (1996).
[CrossRef]

Opt. Lett. (1)

Phys. Rev. Lett. (1)

J. F. Owen, P. W. Barber, P. B. Dorain, and R. K. Chang, Phys. Rev. Lett. 47, 1075 (1981).
[CrossRef]

Sensors Actuators A (2)

R. Srivastava, C. Bao, and C. Gomez-Reino, Sensors Actuators A 51, 165 (1996).
[CrossRef]

K. Wörhoff, A. Driessen, P. V. Lambeck, L. T. H. Hilderink, P. W. C. Linders, and Th. J. A. Popma, Sensors Actuators A 74, 9 (1999).
[CrossRef]

Other (1)

R. K. Chang and A. J. Campillo, eds., Optical Processes in Microcavities (World Scientific, Singapore, 1996).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Cross section and top view of an integrated optical MC. Light from a tunable laser is coupled into the waveguide, which excites the MC. Device parameters: R=15 µm; d=375 nm; hc=255 nm; waveguide width, 1.5 µm. An additional etching step is taken hc=150 nm to decrease the radiation losses of the MC.10 The transverse mode profile of the MC mode is also shown by the curve.

Fig. 2
Fig. 2

a, Scattering spectra from the MC of R=15 µm with water cladding, showing a dramatic increase of the power in the MC at the WGM resonances. The high-Q modes of the MC, denoted A and B, are identified. Snap shots of the MC b, off resonance and c, on resonance are shown as well.

Fig. 3
Fig. 3

a, Fluorescence emission and b, excitation spectra of Indocyanine Green dye on top of the MC, excited near resonant mode B. Open circles, measured points; solid curve, Lorentz fit. In the inset of b the rectangle outlines the area from which the fluorescence signal is collected. The bulk concentration of the dye in the cladding (water solution) is 10-5 M. A drop of aqueous dye solution was put on top of the MC, and the fluorescence signal was collected with a high-N.A. water-immersion objective. The power in the waveguide is Pin=100 µW. With this power the excitation intensity at the MC is estimated to be 3×104 W/cm2. The calculated fluorescence saturation intensity for Indocyanine Green is 2×105 W/cm2 (according to the data of Ref. 13).

Fig. 4
Fig. 4

Prediction of the number of excited fluorescent molecules that provide a signal-to-noise ratio of unity with excitation by the MC versus enhancement factor G. The fluorescence excitation with a waveguide of equivalent length of 2πR corresponds to G=1. The fluorescent sample is Indocyanine Green (quantum yield qF=0.13, λabs=779 nm, λemission=820 nm). Input power, 1 µW; integration time, 1 s. The waveguide materials are a, Si3N4 (used in this work) and b, low-luminescence ZnO.3

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

PMC=λQ2π2RPin=GPin,

Metrics