Abstract

We present an experimental technique capable of single-shot recording of an ultrashort laser pulse sonogram by use of two-photon absorption in a conventional silicon CCD camera. The quadratic spectral phase, introduced into a 100-fs pulse by a grating stretcher, was measured and found to be in good agreement with the analytically calculated value. The nonlinear response of silicon allows sonogram characterization in a wavelength range from 1 to 2 µm.

© 2002 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. L. A. Chilla and O. E. Martinez, Opt. Lett. 16, 39 (1991).
    [CrossRef] [PubMed]
  2. J.-K. Rhee, T. S. Sosnowski, A.-C. Tien, and T. B. Norris, J. Opt. Soc. Am. B 13, 1780 (1996).
    [CrossRef]
  3. D. J. Kane and R. Trebino, Opt. Lett. 18, 823 (1993).
    [CrossRef] [PubMed]
  4. Y. Takagi, T. Kobayashi, K. Yoshihara, and S. Imamura, Opt. Lett. 17, 658 (1992).
    [CrossRef] [PubMed]
  5. D. T. Reid, W. Sibbett, J. M. Dudley, L. P. Barry, B. Thomsen, and J. D. Harvey, Appl. Opt. 37, 8142 (1998).
    [CrossRef]
  6. I. G. Cormack, W. Sibbett, and D. T. Reid, J. Opt. Soc. Am. B 18, 1377 (2001).
    [CrossRef]
  7. D. Panasenko and Y. Fainman, Appl. Opt. 41, 3748 (2002).
    [CrossRef] [PubMed]
  8. E. B. Treacy, J. Appl. Phys. 42, 3848 (1971).
    [CrossRef]
  9. M. B. Danailov and I. P. Christov, J. Mod. Opt. 36, 725 (1989).
    [CrossRef]
  10. H. P. Weber and H. G. Danielmeyer, Phys. Rev. A 2, 2074 (1970).
    [CrossRef]
  11. J. L. A. Chilla and O. E. Martinez, IEEE J. Quantum Electron. 27, 1228 (1991).
    [CrossRef]
  12. V. Wong and I. A. Walmsley, J. Opt. Soc. Am. B 14, 944 (1997).
    [CrossRef]
  13. D. T. Reid, IEEE J. Quantum Electron. 35, 1584 (1999).
    [CrossRef]
  14. E. B. Treacy, IEEE J. Quantum Electron. QE-5, 454 (1969).
    [CrossRef]
  15. K. A. Briggman, L. J. Richter, and J. C. Stephenson, Opt. Lett. 26, 238 (2001).
    [CrossRef]

2002 (1)

2001 (2)

1999 (1)

D. T. Reid, IEEE J. Quantum Electron. 35, 1584 (1999).
[CrossRef]

1998 (1)

1997 (1)

1996 (1)

1993 (1)

1992 (1)

1991 (2)

J. L. A. Chilla and O. E. Martinez, Opt. Lett. 16, 39 (1991).
[CrossRef] [PubMed]

J. L. A. Chilla and O. E. Martinez, IEEE J. Quantum Electron. 27, 1228 (1991).
[CrossRef]

1989 (1)

M. B. Danailov and I. P. Christov, J. Mod. Opt. 36, 725 (1989).
[CrossRef]

1971 (1)

E. B. Treacy, J. Appl. Phys. 42, 3848 (1971).
[CrossRef]

1970 (1)

H. P. Weber and H. G. Danielmeyer, Phys. Rev. A 2, 2074 (1970).
[CrossRef]

1969 (1)

E. B. Treacy, IEEE J. Quantum Electron. QE-5, 454 (1969).
[CrossRef]

Barry, L. P.

Briggman, K. A.

Chilla, J. L. A.

J. L. A. Chilla and O. E. Martinez, IEEE J. Quantum Electron. 27, 1228 (1991).
[CrossRef]

J. L. A. Chilla and O. E. Martinez, Opt. Lett. 16, 39 (1991).
[CrossRef] [PubMed]

Christov, I. P.

M. B. Danailov and I. P. Christov, J. Mod. Opt. 36, 725 (1989).
[CrossRef]

Cormack, I. G.

Danailov, M. B.

M. B. Danailov and I. P. Christov, J. Mod. Opt. 36, 725 (1989).
[CrossRef]

Danielmeyer, H. G.

H. P. Weber and H. G. Danielmeyer, Phys. Rev. A 2, 2074 (1970).
[CrossRef]

Dudley, J. M.

Fainman, Y.

Harvey, J. D.

Imamura, S.

Kane, D. J.

Kobayashi, T.

Martinez, O. E.

J. L. A. Chilla and O. E. Martinez, Opt. Lett. 16, 39 (1991).
[CrossRef] [PubMed]

J. L. A. Chilla and O. E. Martinez, IEEE J. Quantum Electron. 27, 1228 (1991).
[CrossRef]

Norris, T. B.

Panasenko, D.

Reid, D. T.

Rhee, J.-K.

Richter, L. J.

Sibbett, W.

Sosnowski, T. S.

Stephenson, J. C.

Takagi, Y.

Thomsen, B.

Tien, A.-C.

Treacy, E. B.

E. B. Treacy, J. Appl. Phys. 42, 3848 (1971).
[CrossRef]

E. B. Treacy, IEEE J. Quantum Electron. QE-5, 454 (1969).
[CrossRef]

Trebino, R.

Walmsley, I. A.

Weber, H. P.

H. P. Weber and H. G. Danielmeyer, Phys. Rev. A 2, 2074 (1970).
[CrossRef]

Wong, V.

Yoshihara, K.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Diagram of the experimental approach. The signal pulse is introduced into a low-resolution spectrometer dispersing optical frequency along the x2 coordinate. A replica of the signal is used to produce the time reference along the y coordinate through nonlinear correlation with the spectrally decomposed signal on the CCD camera.

Fig. 2
Fig. 2

Illustration of the filtering of the ultrashort pulse spectrum by the spatial mode in the spectral device. The ultrashort pulse and the spatial mode on the surface of the grating are indicated by the white and gray Gaussians, respectively. The lens performs a Fourier transform on both the temporal and the spatial parts of the signal generating the filter function as described by expression (2).

Fig. 3
Fig. 3

CCD snapshot of the sonogram of a linearly chirped pulse. The fringes inside the sonogram are due to the interferometric nature of the generated correlation.

Fig. 4
Fig. 4

Spectrum of the signal together with the spectral phase (diamonds) extracted from the sonogram of Fig. 3. The quadratic spectral phase calculated from the grating stretcher geometry is shown for comparison (solid curve). Inset, autocorrelation of the pulse on the output of the grating stretcher obtained with moving delay-line correlator (solid curve) and autocorrelation (dashed curve) calculated from the pulse shape extracted from the sonogram.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

St,ω=p˜ωw˜ω-ωexpiωtdω2,
EFt,xw˜1ω0cfx2-2πω0dΩp˜ΩexpjΩtdΩ,
Erefδt-y sinα/cexpjω0t,
Iy,x2W˜1ω0cfx2-2πω0dΩp˜Ω×expjΩy sinα/cdΩ2.

Metrics