Abstract

We have compared coherent population trapping (CPT) resonances, both experimentally and theoretically, for excitation of the D1 and D2 transitions of thermal Rb85 vapor. Excitation of the D1 line results in greater resonance contrast than excitation of the D2 line and in a reduction in the resonance width, in agreement with theoretical expectations. These results translate into a nearly tenfold improvement in performance for the application of CPT resonances to a frequency standard or a sensitive magnetometer when the D1 line, rather than the D2 line, is used.

© 2002 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Kitching, S. Knappe, N. Vukičević, L. Hollberg, R. Wynands, and W. Weidemann, IEEE Trans. Instrum. Meas. 49, 1313 (2000).
    [Crossref]
  2. R. Wynands and A. Nagel, Appl. Phys. B 68, 1 (1999).
    [Crossref]
  3. M. Stähler, S. Knappe, C. Affolderbach, W. Kemp, and R. Wynands, Europhys. Lett. 53, 323 (2001).
    [Crossref]
  4. E. Arimondo, in Progress in Optics, E. Wolf, ed. (Pergamon, London, 1996), Vol. 35, pp. 257–354.
    [Crossref]
  5. See, however, C. Affolderbach, S. Knappe, A. Taichenachev, V. Yudin, and R. Wynands, Phys. Rev. A 65, 043810 (2002).
    [Crossref]
  6. M. Zhu and L. S. Cutler, presented at the 32 Annual Precise Time and Time Interval Systems and Applications Meeting, Reston, Va., November 28–30, 2000; “Coherent population trapping-based frequency standard having a reduced magnitude of total a.c. stark shift,” U.S. patent6,201,821 (March13, 2001).
  7. J. Vanier and C. Audoin, The Quantum Physics of Atomic Frequency Standards (Adam Hilger, Bristol, UK, 1989).
    [Crossref]
  8. F. Renzoni, W. Maichen, L. Windholz, and E. Arimondo, Phys. Rev. A 55, 3710 (1997).
    [Crossref]
  9. N. Cyr, M. Têtu, and M. Breton, IEEE Trans. Instrum. Meas. 42, 640 (1993).
    [Crossref]
  10. S. Knappe, R. Wynands, J. Kitching, H. G. Robinson, and L. Hollberg, J. Opt. Soc., Am. B 18, 1545 (2001).
    [Crossref]
  11. S. Knappe, J. Kitching, L. Hollberg, and R. Wynands, Appl. Phys. B 74, 217 (2002).
    [Crossref]
  12. M. Zhu, “Ligands for metals and improved metal-catalyzed processes based thereon,” U.S. patent6,395,916 (March19, 2002).

2002 (2)

See, however, C. Affolderbach, S. Knappe, A. Taichenachev, V. Yudin, and R. Wynands, Phys. Rev. A 65, 043810 (2002).
[Crossref]

S. Knappe, J. Kitching, L. Hollberg, and R. Wynands, Appl. Phys. B 74, 217 (2002).
[Crossref]

2001 (2)

M. Stähler, S. Knappe, C. Affolderbach, W. Kemp, and R. Wynands, Europhys. Lett. 53, 323 (2001).
[Crossref]

S. Knappe, R. Wynands, J. Kitching, H. G. Robinson, and L. Hollberg, J. Opt. Soc., Am. B 18, 1545 (2001).
[Crossref]

2000 (1)

J. Kitching, S. Knappe, N. Vukičević, L. Hollberg, R. Wynands, and W. Weidemann, IEEE Trans. Instrum. Meas. 49, 1313 (2000).
[Crossref]

1999 (1)

R. Wynands and A. Nagel, Appl. Phys. B 68, 1 (1999).
[Crossref]

1997 (1)

F. Renzoni, W. Maichen, L. Windholz, and E. Arimondo, Phys. Rev. A 55, 3710 (1997).
[Crossref]

1993 (1)

N. Cyr, M. Têtu, and M. Breton, IEEE Trans. Instrum. Meas. 42, 640 (1993).
[Crossref]

Affolderbach, C.

See, however, C. Affolderbach, S. Knappe, A. Taichenachev, V. Yudin, and R. Wynands, Phys. Rev. A 65, 043810 (2002).
[Crossref]

M. Stähler, S. Knappe, C. Affolderbach, W. Kemp, and R. Wynands, Europhys. Lett. 53, 323 (2001).
[Crossref]

Arimondo, E.

F. Renzoni, W. Maichen, L. Windholz, and E. Arimondo, Phys. Rev. A 55, 3710 (1997).
[Crossref]

E. Arimondo, in Progress in Optics, E. Wolf, ed. (Pergamon, London, 1996), Vol. 35, pp. 257–354.
[Crossref]

Audoin, C.

J. Vanier and C. Audoin, The Quantum Physics of Atomic Frequency Standards (Adam Hilger, Bristol, UK, 1989).
[Crossref]

Breton, M.

N. Cyr, M. Têtu, and M. Breton, IEEE Trans. Instrum. Meas. 42, 640 (1993).
[Crossref]

Cutler, L. S.

M. Zhu and L. S. Cutler, presented at the 32 Annual Precise Time and Time Interval Systems and Applications Meeting, Reston, Va., November 28–30, 2000; “Coherent population trapping-based frequency standard having a reduced magnitude of total a.c. stark shift,” U.S. patent6,201,821 (March13, 2001).

Cyr, N.

N. Cyr, M. Têtu, and M. Breton, IEEE Trans. Instrum. Meas. 42, 640 (1993).
[Crossref]

Hollberg, L.

S. Knappe, J. Kitching, L. Hollberg, and R. Wynands, Appl. Phys. B 74, 217 (2002).
[Crossref]

S. Knappe, R. Wynands, J. Kitching, H. G. Robinson, and L. Hollberg, J. Opt. Soc., Am. B 18, 1545 (2001).
[Crossref]

J. Kitching, S. Knappe, N. Vukičević, L. Hollberg, R. Wynands, and W. Weidemann, IEEE Trans. Instrum. Meas. 49, 1313 (2000).
[Crossref]

Kemp, W.

M. Stähler, S. Knappe, C. Affolderbach, W. Kemp, and R. Wynands, Europhys. Lett. 53, 323 (2001).
[Crossref]

Kitching, J.

S. Knappe, J. Kitching, L. Hollberg, and R. Wynands, Appl. Phys. B 74, 217 (2002).
[Crossref]

S. Knappe, R. Wynands, J. Kitching, H. G. Robinson, and L. Hollberg, J. Opt. Soc., Am. B 18, 1545 (2001).
[Crossref]

J. Kitching, S. Knappe, N. Vukičević, L. Hollberg, R. Wynands, and W. Weidemann, IEEE Trans. Instrum. Meas. 49, 1313 (2000).
[Crossref]

Knappe, S.

See, however, C. Affolderbach, S. Knappe, A. Taichenachev, V. Yudin, and R. Wynands, Phys. Rev. A 65, 043810 (2002).
[Crossref]

S. Knappe, J. Kitching, L. Hollberg, and R. Wynands, Appl. Phys. B 74, 217 (2002).
[Crossref]

S. Knappe, R. Wynands, J. Kitching, H. G. Robinson, and L. Hollberg, J. Opt. Soc., Am. B 18, 1545 (2001).
[Crossref]

M. Stähler, S. Knappe, C. Affolderbach, W. Kemp, and R. Wynands, Europhys. Lett. 53, 323 (2001).
[Crossref]

J. Kitching, S. Knappe, N. Vukičević, L. Hollberg, R. Wynands, and W. Weidemann, IEEE Trans. Instrum. Meas. 49, 1313 (2000).
[Crossref]

Maichen, W.

F. Renzoni, W. Maichen, L. Windholz, and E. Arimondo, Phys. Rev. A 55, 3710 (1997).
[Crossref]

Nagel, A.

R. Wynands and A. Nagel, Appl. Phys. B 68, 1 (1999).
[Crossref]

Renzoni, F.

F. Renzoni, W. Maichen, L. Windholz, and E. Arimondo, Phys. Rev. A 55, 3710 (1997).
[Crossref]

Robinson, H. G.

S. Knappe, R. Wynands, J. Kitching, H. G. Robinson, and L. Hollberg, J. Opt. Soc., Am. B 18, 1545 (2001).
[Crossref]

Stähler, M.

M. Stähler, S. Knappe, C. Affolderbach, W. Kemp, and R. Wynands, Europhys. Lett. 53, 323 (2001).
[Crossref]

Taichenachev, A.

See, however, C. Affolderbach, S. Knappe, A. Taichenachev, V. Yudin, and R. Wynands, Phys. Rev. A 65, 043810 (2002).
[Crossref]

Têtu, M.

N. Cyr, M. Têtu, and M. Breton, IEEE Trans. Instrum. Meas. 42, 640 (1993).
[Crossref]

Vanier, J.

J. Vanier and C. Audoin, The Quantum Physics of Atomic Frequency Standards (Adam Hilger, Bristol, UK, 1989).
[Crossref]

Vukicevic, N.

J. Kitching, S. Knappe, N. Vukičević, L. Hollberg, R. Wynands, and W. Weidemann, IEEE Trans. Instrum. Meas. 49, 1313 (2000).
[Crossref]

Weidemann, W.

J. Kitching, S. Knappe, N. Vukičević, L. Hollberg, R. Wynands, and W. Weidemann, IEEE Trans. Instrum. Meas. 49, 1313 (2000).
[Crossref]

Windholz, L.

F. Renzoni, W. Maichen, L. Windholz, and E. Arimondo, Phys. Rev. A 55, 3710 (1997).
[Crossref]

Wynands, R.

See, however, C. Affolderbach, S. Knappe, A. Taichenachev, V. Yudin, and R. Wynands, Phys. Rev. A 65, 043810 (2002).
[Crossref]

S. Knappe, J. Kitching, L. Hollberg, and R. Wynands, Appl. Phys. B 74, 217 (2002).
[Crossref]

S. Knappe, R. Wynands, J. Kitching, H. G. Robinson, and L. Hollberg, J. Opt. Soc., Am. B 18, 1545 (2001).
[Crossref]

M. Stähler, S. Knappe, C. Affolderbach, W. Kemp, and R. Wynands, Europhys. Lett. 53, 323 (2001).
[Crossref]

J. Kitching, S. Knappe, N. Vukičević, L. Hollberg, R. Wynands, and W. Weidemann, IEEE Trans. Instrum. Meas. 49, 1313 (2000).
[Crossref]

R. Wynands and A. Nagel, Appl. Phys. B 68, 1 (1999).
[Crossref]

Yudin, V.

See, however, C. Affolderbach, S. Knappe, A. Taichenachev, V. Yudin, and R. Wynands, Phys. Rev. A 65, 043810 (2002).
[Crossref]

Zhu, M.

M. Zhu and L. S. Cutler, presented at the 32 Annual Precise Time and Time Interval Systems and Applications Meeting, Reston, Va., November 28–30, 2000; “Coherent population trapping-based frequency standard having a reduced magnitude of total a.c. stark shift,” U.S. patent6,201,821 (March13, 2001).

M. Zhu, “Ligands for metals and improved metal-catalyzed processes based thereon,” U.S. patent6,395,916 (March19, 2002).

Appl. Phys. B (2)

R. Wynands and A. Nagel, Appl. Phys. B 68, 1 (1999).
[Crossref]

S. Knappe, J. Kitching, L. Hollberg, and R. Wynands, Appl. Phys. B 74, 217 (2002).
[Crossref]

Europhys. Lett. (1)

M. Stähler, S. Knappe, C. Affolderbach, W. Kemp, and R. Wynands, Europhys. Lett. 53, 323 (2001).
[Crossref]

IEEE Trans. Instrum. Meas. (2)

J. Kitching, S. Knappe, N. Vukičević, L. Hollberg, R. Wynands, and W. Weidemann, IEEE Trans. Instrum. Meas. 49, 1313 (2000).
[Crossref]

N. Cyr, M. Têtu, and M. Breton, IEEE Trans. Instrum. Meas. 42, 640 (1993).
[Crossref]

J. Opt. Soc., Am. B (1)

S. Knappe, R. Wynands, J. Kitching, H. G. Robinson, and L. Hollberg, J. Opt. Soc., Am. B 18, 1545 (2001).
[Crossref]

Phys. Rev. A (2)

F. Renzoni, W. Maichen, L. Windholz, and E. Arimondo, Phys. Rev. A 55, 3710 (1997).
[Crossref]

See, however, C. Affolderbach, S. Knappe, A. Taichenachev, V. Yudin, and R. Wynands, Phys. Rev. A 65, 043810 (2002).
[Crossref]

Other (4)

M. Zhu and L. S. Cutler, presented at the 32 Annual Precise Time and Time Interval Systems and Applications Meeting, Reston, Va., November 28–30, 2000; “Coherent population trapping-based frequency standard having a reduced magnitude of total a.c. stark shift,” U.S. patent6,201,821 (March13, 2001).

J. Vanier and C. Audoin, The Quantum Physics of Atomic Frequency Standards (Adam Hilger, Bristol, UK, 1989).
[Crossref]

E. Arimondo, in Progress in Optics, E. Wolf, ed. (Pergamon, London, 1996), Vol. 35, pp. 257–354.
[Crossref]

M. Zhu, “Ligands for metals and improved metal-catalyzed processes based thereon,” U.S. patent6,395,916 (March19, 2002).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Experimental setup for the comparison of the CPT resonances for excitation when the D1 and the D2 transitions are used.

Fig. 2
Fig. 2

CPT resonance for excitation on A, the D1 transition and B, the D2 transition with a resonant laser intensity of 160 µW/cm2.

Fig. 3
Fig. 3

CPT (a) amplitude, (b) width, and (c) quotient of both quantities, measured for excitation on the D1 (squares) and the D2 (triangles) transitions.

Metrics