Abstract

We present what we believe to be the first intracavity tripled Ti:sapphire laser. This source is tunable in the 275–285-nm range and will be useful for applications in the detection of important atmospheric species such as OH and NO radicals. Single-frequency operation and high optical yield >50% are obtained in this system after it has been injected by a laser diode.

© 2002 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. Poirier and F. Hanson, Opt. Lett. 18, 1925 (1993).
    [Crossref]
  2. R. Wu, Appl. Opt. 32, 971 (1993).
    [Crossref] [PubMed]
  3. S. Sayama and M. Ohtsu, Opt. Commun. 137, 295 (1997).
    [Crossref]
  4. A. K. Mohamed, J. A. Pruvost, I. Ribet, M. Lefebvre, E. Rosencher, and D. J. Binks, IEEE J. Quantum Eletron. 37, 290 (2001).
    [Crossref]
  5. D. J. Binks, P. S. Golding, and T. A. King, J. Mod. Opt. 47, 1899 (2000).
    [Crossref]
  6. R. S. Craxton, IEEE J. Quantum Electron. QE-17, 1771 (1981).
    [Crossref]
  7. J. E. Murray and S. E. Harris, J. Appl. Phys. 41, 609 (1970).
    [Crossref]

2001 (1)

A. K. Mohamed, J. A. Pruvost, I. Ribet, M. Lefebvre, E. Rosencher, and D. J. Binks, IEEE J. Quantum Eletron. 37, 290 (2001).
[Crossref]

2000 (1)

D. J. Binks, P. S. Golding, and T. A. King, J. Mod. Opt. 47, 1899 (2000).
[Crossref]

1997 (1)

S. Sayama and M. Ohtsu, Opt. Commun. 137, 295 (1997).
[Crossref]

1993 (2)

1981 (1)

R. S. Craxton, IEEE J. Quantum Electron. QE-17, 1771 (1981).
[Crossref]

1970 (1)

J. E. Murray and S. E. Harris, J. Appl. Phys. 41, 609 (1970).
[Crossref]

Binks, D. J.

A. K. Mohamed, J. A. Pruvost, I. Ribet, M. Lefebvre, E. Rosencher, and D. J. Binks, IEEE J. Quantum Eletron. 37, 290 (2001).
[Crossref]

D. J. Binks, P. S. Golding, and T. A. King, J. Mod. Opt. 47, 1899 (2000).
[Crossref]

Craxton, R. S.

R. S. Craxton, IEEE J. Quantum Electron. QE-17, 1771 (1981).
[Crossref]

Golding, P. S.

D. J. Binks, P. S. Golding, and T. A. King, J. Mod. Opt. 47, 1899 (2000).
[Crossref]

Hanson, F.

Harris, S. E.

J. E. Murray and S. E. Harris, J. Appl. Phys. 41, 609 (1970).
[Crossref]

King, T. A.

D. J. Binks, P. S. Golding, and T. A. King, J. Mod. Opt. 47, 1899 (2000).
[Crossref]

Lefebvre, M.

A. K. Mohamed, J. A. Pruvost, I. Ribet, M. Lefebvre, E. Rosencher, and D. J. Binks, IEEE J. Quantum Eletron. 37, 290 (2001).
[Crossref]

Mohamed, A. K.

A. K. Mohamed, J. A. Pruvost, I. Ribet, M. Lefebvre, E. Rosencher, and D. J. Binks, IEEE J. Quantum Eletron. 37, 290 (2001).
[Crossref]

Murray, J. E.

J. E. Murray and S. E. Harris, J. Appl. Phys. 41, 609 (1970).
[Crossref]

Ohtsu, M.

S. Sayama and M. Ohtsu, Opt. Commun. 137, 295 (1997).
[Crossref]

Poirier, P.

Pruvost, J. A.

A. K. Mohamed, J. A. Pruvost, I. Ribet, M. Lefebvre, E. Rosencher, and D. J. Binks, IEEE J. Quantum Eletron. 37, 290 (2001).
[Crossref]

Ribet, I.

A. K. Mohamed, J. A. Pruvost, I. Ribet, M. Lefebvre, E. Rosencher, and D. J. Binks, IEEE J. Quantum Eletron. 37, 290 (2001).
[Crossref]

Rosencher, E.

A. K. Mohamed, J. A. Pruvost, I. Ribet, M. Lefebvre, E. Rosencher, and D. J. Binks, IEEE J. Quantum Eletron. 37, 290 (2001).
[Crossref]

Sayama, S.

S. Sayama and M. Ohtsu, Opt. Commun. 137, 295 (1997).
[Crossref]

Wu, R.

Appl. Opt. (1)

IEEE J. Quantum Electron. (1)

R. S. Craxton, IEEE J. Quantum Electron. QE-17, 1771 (1981).
[Crossref]

IEEE J. Quantum Eletron. (1)

A. K. Mohamed, J. A. Pruvost, I. Ribet, M. Lefebvre, E. Rosencher, and D. J. Binks, IEEE J. Quantum Eletron. 37, 290 (2001).
[Crossref]

J. Appl. Phys. (1)

J. E. Murray and S. E. Harris, J. Appl. Phys. 41, 609 (1970).
[Crossref]

J. Mod. Opt. (1)

D. J. Binks, P. S. Golding, and T. A. King, J. Mod. Opt. 47, 1899 (2000).
[Crossref]

Opt. Commun. (1)

S. Sayama and M. Ohtsu, Opt. Commun. 137, 295 (1997).
[Crossref]

Opt. Lett. (1)

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Schematic view of the experimental apparatus. The polarizations of the waves as well as the respective interaction types are indicated.

Fig. 2
Fig. 2

Pulse energy of the output fundamental (at 838 nm), frequency-doubled, and frequency-tripled waves as a function of the input 532-nm pump pulse energy.

Fig. 3
Fig. 3

Spectral profiles for fundamental ω, second-harmonic 2ω, and third-harmonic 3ω laser emissions (wavelength multiplied by 2 for 2ω and by 3 for 3ω). The 2ω and 3ω curves are shown for spectral positions that correspond to optimum orientations of the LBO and BBO crystals.

Fig. 4
Fig. 4

Overall tunability curve of the apparatus obtained by tuning of both LBO and BBO nonlinear crystal orientations. The OH rotational lines of the AX (v=0 to v=1) vibrational band are shown for comparison.

Fig. 5
Fig. 5

Seeding of the intracavity tripled Ti:sapphire laser.

Metrics