Abstract

We present a novel technique for tuning an optical parametric oscillator (OPO) through electro-optically induced shape variations of the parametric gain spectrum in quasi-phase-matched lithium niobate (LN). The diode-pumped, triply resonant continuous-wave OPO is based on a 58-mm-long LN crystal that consists of three equally long sections, the outer sections being periodically poled with a 50% duty cycle. The center section is single-domain material and serves as a tunable phase shifter through the electro-optic effect. By application of a voltage of up to 1230 V, the OPO signal and idler wavelengths are tuned over 102 nm from 1560 to 1660 nm, in good agreement with theory.

© 2002 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. L. E. Myers, R. C. Eckardt, M. M. Fejer, R. L. Byer, W. R. Bosenberg, and J. W. Pierce, J. Opt. Soc. Am. B 12, 2102 (1995).
    [CrossRef]
  2. M. E. Klein, D.-H. Lee, J.-P. Meyn, K.-J. Boller, and R. Wallenstein, Opt. Lett. 24, 1142 (1999).
    [CrossRef]
  3. R. L. Sutherland, Handbook of Nonlinear Optics (Marcel Dekker, New York, 1996), Chap. 3.
  4. N. O’Brien, M. Missey, P. Powers, and V. Dominic, Opt. Lett. 24, 1750 (1999).
    [CrossRef]
  5. M. M. Fejer, G. A. Magel, G. H. Jundt, and R. L. Byer, IEEE J. Quantum Electron. 28, 2631 (1992).
    [CrossRef]
  6. J. F. Nye, Physical Properties of Crystals (Oxford U. Press, Oxford, 1957), Chap. 13.
  7. We note that there is an additional phase shift caused by the reverse piezoelectric effect. As this effect is smaller than the electro-optic effect by approximately 3 orders of magnitude, we can neglect it.
  8. R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, Appl. Phys. B 31, 97 (1983).
    [CrossRef]
  9. D. H. Jundt, Opt. Lett. 22, 1553 (1997).
    [CrossRef]
  10. R. S. Weis and T. K. Gaylord, Appl. Phys. A 37, 191 (1985).
    [CrossRef]
  11. H. Ridderbusch, M. E. Klein, P. Gross, D.-H. Lee, J.-P. Meyn, R. Wallenstein, and K.-J. Boller, J. Opt. Soc. Am. B 19, 280 (2002).
    [CrossRef]
  12. S. T. Yang and S. P. Velsko, Opt. Lett. 24, 133 (1999).
    [CrossRef]

2002 (1)

1999 (3)

1997 (1)

1995 (1)

1992 (1)

M. M. Fejer, G. A. Magel, G. H. Jundt, and R. L. Byer, IEEE J. Quantum Electron. 28, 2631 (1992).
[CrossRef]

1985 (1)

R. S. Weis and T. K. Gaylord, Appl. Phys. A 37, 191 (1985).
[CrossRef]

1983 (1)

R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, Appl. Phys. B 31, 97 (1983).
[CrossRef]

Boller, K.-J.

Bosenberg, W. R.

Byer, R. L.

L. E. Myers, R. C. Eckardt, M. M. Fejer, R. L. Byer, W. R. Bosenberg, and J. W. Pierce, J. Opt. Soc. Am. B 12, 2102 (1995).
[CrossRef]

M. M. Fejer, G. A. Magel, G. H. Jundt, and R. L. Byer, IEEE J. Quantum Electron. 28, 2631 (1992).
[CrossRef]

Dominic, V.

Drever, R. W. P.

R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, Appl. Phys. B 31, 97 (1983).
[CrossRef]

Eckardt, R. C.

Fejer, M. M.

L. E. Myers, R. C. Eckardt, M. M. Fejer, R. L. Byer, W. R. Bosenberg, and J. W. Pierce, J. Opt. Soc. Am. B 12, 2102 (1995).
[CrossRef]

M. M. Fejer, G. A. Magel, G. H. Jundt, and R. L. Byer, IEEE J. Quantum Electron. 28, 2631 (1992).
[CrossRef]

Ford, G. M.

R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, Appl. Phys. B 31, 97 (1983).
[CrossRef]

Gaylord, T. K.

R. S. Weis and T. K. Gaylord, Appl. Phys. A 37, 191 (1985).
[CrossRef]

Gross, P.

Hall, J. L.

R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, Appl. Phys. B 31, 97 (1983).
[CrossRef]

Hough, J.

R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, Appl. Phys. B 31, 97 (1983).
[CrossRef]

Jundt, D. H.

Jundt, G. H.

M. M. Fejer, G. A. Magel, G. H. Jundt, and R. L. Byer, IEEE J. Quantum Electron. 28, 2631 (1992).
[CrossRef]

Klein, M. E.

Kowalski, F. V.

R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, Appl. Phys. B 31, 97 (1983).
[CrossRef]

Lee, D.-H.

Magel, G. A.

M. M. Fejer, G. A. Magel, G. H. Jundt, and R. L. Byer, IEEE J. Quantum Electron. 28, 2631 (1992).
[CrossRef]

Meyn, J.-P.

Missey, M.

Munley, A. J.

R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, Appl. Phys. B 31, 97 (1983).
[CrossRef]

Myers, L. E.

Nye, J. F.

J. F. Nye, Physical Properties of Crystals (Oxford U. Press, Oxford, 1957), Chap. 13.

O’Brien, N.

Pierce, J. W.

Powers, P.

Ridderbusch, H.

Sutherland, R. L.

R. L. Sutherland, Handbook of Nonlinear Optics (Marcel Dekker, New York, 1996), Chap. 3.

Velsko, S. P.

Wallenstein, R.

Ward, H.

R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, Appl. Phys. B 31, 97 (1983).
[CrossRef]

Weis, R. S.

R. S. Weis and T. K. Gaylord, Appl. Phys. A 37, 191 (1985).
[CrossRef]

Yang, S. T.

Appl. Phys. A (1)

R. S. Weis and T. K. Gaylord, Appl. Phys. A 37, 191 (1985).
[CrossRef]

Appl. Phys. B (1)

R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, Appl. Phys. B 31, 97 (1983).
[CrossRef]

IEEE J. Quantum Electron. (1)

M. M. Fejer, G. A. Magel, G. H. Jundt, and R. L. Byer, IEEE J. Quantum Electron. 28, 2631 (1992).
[CrossRef]

J. Opt. Soc. Am. B (2)

Opt. Lett. (4)

Other (3)

R. L. Sutherland, Handbook of Nonlinear Optics (Marcel Dekker, New York, 1996), Chap. 3.

J. F. Nye, Physical Properties of Crystals (Oxford U. Press, Oxford, 1957), Chap. 13.

We note that there is an additional phase shift caused by the reverse piezoelectric effect. As this effect is smaller than the electro-optic effect by approximately 3 orders of magnitude, we can neglect it.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Schematic drawing of a segmented LN crystal. The arrows indicate the direction of the χ2 nonlinear coefficient.

Fig. 2
Fig. 2

Experimental setup of the cw OPO with a segmented LN crystal: EOM, electro-optic modulator; FR, optical isolator; PD, photodiode; PZT, piezo transducer; V, voltage supply.

Fig. 3
Fig. 3

Signal and idler wavelengths as a function of crystal temperature. Pump wavelength, 804.4 nm; grating period, 20.2 µm; no voltage applied. Filled circles, experimental data; solid curves, theoretical calculations.

Fig. 4
Fig. 4

Signal and idler wavelengths as a function of applied voltage. Crystal temperature, 57.0 °C; pump wavelength, 806.6 nm; grating period, 20.6 µm. Filled circles, experimental data; solid curves theoretical calculations.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

gsinc2ΔkLC32cos2ΔΦ2+2ΔkLC32.

Metrics