Abstract

A fiber Fabry–Perot interferometer (FFPI) sensor is formed with broadband (3 nm, 3-dB bandwidth) fiber Bragg grating (FBG) mirrors. Repetitively modulating a distributed-feedback laser produces chirping that modulates the reflectance of the FFPI. Because the reflectance of the FBG mirrors varies with optical frequency, the fringes in the sensor reflectance modulation are distinguishable, making it possible to extend the sensor dynamic range versus that of a FFPI sensor with conventional wavelength-dependent mirrors. An ambient temperature is determined in the range from 25 to 170 °C with a resolution of 0.005 °C.

© 2002 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Y. Yeh, C. E. Lee, R. A. Atkins, W. N. Gilber, and H. F. Taylor, J. Vac. Sci. Technol. A 8, 3247 (1990).
    [CrossRef]
  2. J. X. Fang and H. F. Taylor, Opt. Lett. 24, 522 (1999).
    [CrossRef]
  3. H. S. Choi, C. E. Lee, and H. F. Taylor, Opt. Lett. 22, 1814 (1997).
    [CrossRef]
  4. M. G. Xu, J. L. Archambault, L. Reekie, and P. Dakin, Electron. Lett. 30, 1085 (1994).
    [CrossRef]
  5. A. D. Kersey, T. A. Berkoff, and W. W. Morey, Electron. Lett. 28, 236 (1992).
    [CrossRef]
  6. Y. J. Rao, M. R. Cooper, D. A. Jackson, C. N. Pannell, and L. Reekie, Electron. Lett. 36, 708 (2000).
    [CrossRef]
  7. R. Sadkowski, C. E. Lee, and H. F. Taylor, Appl. Opt. 38, 5861 (1995).
    [CrossRef]

2000

Y. J. Rao, M. R. Cooper, D. A. Jackson, C. N. Pannell, and L. Reekie, Electron. Lett. 36, 708 (2000).
[CrossRef]

1999

1997

1995

R. Sadkowski, C. E. Lee, and H. F. Taylor, Appl. Opt. 38, 5861 (1995).
[CrossRef]

1994

M. G. Xu, J. L. Archambault, L. Reekie, and P. Dakin, Electron. Lett. 30, 1085 (1994).
[CrossRef]

1992

A. D. Kersey, T. A. Berkoff, and W. W. Morey, Electron. Lett. 28, 236 (1992).
[CrossRef]

1990

Y. Yeh, C. E. Lee, R. A. Atkins, W. N. Gilber, and H. F. Taylor, J. Vac. Sci. Technol. A 8, 3247 (1990).
[CrossRef]

Archambault, J. L.

M. G. Xu, J. L. Archambault, L. Reekie, and P. Dakin, Electron. Lett. 30, 1085 (1994).
[CrossRef]

Atkins, R. A.

Y. Yeh, C. E. Lee, R. A. Atkins, W. N. Gilber, and H. F. Taylor, J. Vac. Sci. Technol. A 8, 3247 (1990).
[CrossRef]

Berkoff, T. A.

A. D. Kersey, T. A. Berkoff, and W. W. Morey, Electron. Lett. 28, 236 (1992).
[CrossRef]

Choi, H. S.

Cooper, M. R.

Y. J. Rao, M. R. Cooper, D. A. Jackson, C. N. Pannell, and L. Reekie, Electron. Lett. 36, 708 (2000).
[CrossRef]

Dakin, P.

M. G. Xu, J. L. Archambault, L. Reekie, and P. Dakin, Electron. Lett. 30, 1085 (1994).
[CrossRef]

Fang, J. X.

Gilber, W. N.

Y. Yeh, C. E. Lee, R. A. Atkins, W. N. Gilber, and H. F. Taylor, J. Vac. Sci. Technol. A 8, 3247 (1990).
[CrossRef]

Jackson, D. A.

Y. J. Rao, M. R. Cooper, D. A. Jackson, C. N. Pannell, and L. Reekie, Electron. Lett. 36, 708 (2000).
[CrossRef]

Kersey, A. D.

A. D. Kersey, T. A. Berkoff, and W. W. Morey, Electron. Lett. 28, 236 (1992).
[CrossRef]

Lee, C. E.

H. S. Choi, C. E. Lee, and H. F. Taylor, Opt. Lett. 22, 1814 (1997).
[CrossRef]

R. Sadkowski, C. E. Lee, and H. F. Taylor, Appl. Opt. 38, 5861 (1995).
[CrossRef]

Y. Yeh, C. E. Lee, R. A. Atkins, W. N. Gilber, and H. F. Taylor, J. Vac. Sci. Technol. A 8, 3247 (1990).
[CrossRef]

Morey, W. W.

A. D. Kersey, T. A. Berkoff, and W. W. Morey, Electron. Lett. 28, 236 (1992).
[CrossRef]

Pannell, C. N.

Y. J. Rao, M. R. Cooper, D. A. Jackson, C. N. Pannell, and L. Reekie, Electron. Lett. 36, 708 (2000).
[CrossRef]

Rao, Y. J.

Y. J. Rao, M. R. Cooper, D. A. Jackson, C. N. Pannell, and L. Reekie, Electron. Lett. 36, 708 (2000).
[CrossRef]

Reekie, L.

Y. J. Rao, M. R. Cooper, D. A. Jackson, C. N. Pannell, and L. Reekie, Electron. Lett. 36, 708 (2000).
[CrossRef]

M. G. Xu, J. L. Archambault, L. Reekie, and P. Dakin, Electron. Lett. 30, 1085 (1994).
[CrossRef]

Sadkowski, R.

R. Sadkowski, C. E. Lee, and H. F. Taylor, Appl. Opt. 38, 5861 (1995).
[CrossRef]

Taylor, H. F.

J. X. Fang and H. F. Taylor, Opt. Lett. 24, 522 (1999).
[CrossRef]

H. S. Choi, C. E. Lee, and H. F. Taylor, Opt. Lett. 22, 1814 (1997).
[CrossRef]

R. Sadkowski, C. E. Lee, and H. F. Taylor, Appl. Opt. 38, 5861 (1995).
[CrossRef]

Y. Yeh, C. E. Lee, R. A. Atkins, W. N. Gilber, and H. F. Taylor, J. Vac. Sci. Technol. A 8, 3247 (1990).
[CrossRef]

Xu, M. G.

M. G. Xu, J. L. Archambault, L. Reekie, and P. Dakin, Electron. Lett. 30, 1085 (1994).
[CrossRef]

Yeh, Y.

Y. Yeh, C. E. Lee, R. A. Atkins, W. N. Gilber, and H. F. Taylor, J. Vac. Sci. Technol. A 8, 3247 (1990).
[CrossRef]

Appl. Opt.

R. Sadkowski, C. E. Lee, and H. F. Taylor, Appl. Opt. 38, 5861 (1995).
[CrossRef]

Electron. Lett.

M. G. Xu, J. L. Archambault, L. Reekie, and P. Dakin, Electron. Lett. 30, 1085 (1994).
[CrossRef]

A. D. Kersey, T. A. Berkoff, and W. W. Morey, Electron. Lett. 28, 236 (1992).
[CrossRef]

Y. J. Rao, M. R. Cooper, D. A. Jackson, C. N. Pannell, and L. Reekie, Electron. Lett. 36, 708 (2000).
[CrossRef]

J. Vac. Sci. Technol. A

Y. Yeh, C. E. Lee, R. A. Atkins, W. N. Gilber, and H. F. Taylor, J. Vac. Sci. Technol. A 8, 3247 (1990).
[CrossRef]

Opt. Lett.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Experimental arrangement.

Fig. 2
Fig. 2

Reflectance spectra of (a) the FBG FFPI sensor, and (b) the original FBG.

Fig. 3
Fig. 3

Waveforms of the laser power and sensor reflectance within one modulation cycle.

Fig. 4
Fig. 4

Obtained effective reflectance maximum as a function of temperature.

Fig. 5
Fig. 5

Resolution based on phase shift and reflectance variances. The slope in the plot of phase shift versus time corresponds to a rate of temperature increase of 0.6 C°/s.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

R=r1+r2+2r1r21/2 cos ϕ,
ϕ=4πnL/λ,
Rmax=r1+r2+2r1r21/2.
Rmax=Ra+Rb-Rat0-ta/tb-ta.

Metrics