Abstract

By using tailored pulse sequences from a novel, 1.5µm direct space-to-time pulse shaper driving a high-speed photodetector, we have achieved, for the first time to our knowledge, millimeter-wave arbitrary waveform generation at center frequencies approaching 50 GHz. By appropriately designing the driving optical pulse sequences, we demonstrate the ability to synthesize strongly phase- and frequency-modulated millimeter-wave electrical signals on a cycle-by-cycle basis.

© 2002 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. M. Weiner, Rev. Sci. Instrum. 71, 1929 (2000).
    [CrossRef]
  2. Y. Liu, S.-G. Park, and A. M. Weiner, IEEE J. Sel. Top. Quant. Electron. 2, 709 (1996).
    [CrossRef]
  3. B. Jalali, P. Kelkar, and V. Saxena, in Proceedings of the 14th Annual Meeting of the IEEE (IEEE Lasers and Electro-Optics Society, Piscataway, N.J., 2001), pp. 253–254.
  4. D. E. Leaird and A. M. Weiner, IEEE J. Quantum Electron. 37, 494 (2001).
    [CrossRef]
  5. Ph. Emplit, J. P. Hamaide, and F. Reynaud, Opt. Lett. 17, 1358 (1992).
    [CrossRef]
  6. D. E. Leaird and A. M. Weiner, Opt. Lett. 24, 853 (1999).
    [CrossRef]
  7. D. E. Leaird and A. M. Weiner, Opt. Lett. 25, 850 (2000).
    [CrossRef]
  8. J. N. Mait, J. Opt. Soc. Am. A 7, 1514 (1990).
    [CrossRef]
  9. K. Tamura, H. A. Haus, and E. P. Ippen, Electron. Lett. 28, 2226 (1992).
    [CrossRef]

2001 (1)

D. E. Leaird and A. M. Weiner, IEEE J. Quantum Electron. 37, 494 (2001).
[CrossRef]

2000 (2)

1999 (1)

1996 (1)

Y. Liu, S.-G. Park, and A. M. Weiner, IEEE J. Sel. Top. Quant. Electron. 2, 709 (1996).
[CrossRef]

1992 (2)

Ph. Emplit, J. P. Hamaide, and F. Reynaud, Opt. Lett. 17, 1358 (1992).
[CrossRef]

K. Tamura, H. A. Haus, and E. P. Ippen, Electron. Lett. 28, 2226 (1992).
[CrossRef]

1990 (1)

Emplit, Ph.

Hamaide, J. P.

Haus, H. A.

K. Tamura, H. A. Haus, and E. P. Ippen, Electron. Lett. 28, 2226 (1992).
[CrossRef]

Ippen, E. P.

K. Tamura, H. A. Haus, and E. P. Ippen, Electron. Lett. 28, 2226 (1992).
[CrossRef]

Jalali, B.

B. Jalali, P. Kelkar, and V. Saxena, in Proceedings of the 14th Annual Meeting of the IEEE (IEEE Lasers and Electro-Optics Society, Piscataway, N.J., 2001), pp. 253–254.

Kelkar, P.

B. Jalali, P. Kelkar, and V. Saxena, in Proceedings of the 14th Annual Meeting of the IEEE (IEEE Lasers and Electro-Optics Society, Piscataway, N.J., 2001), pp. 253–254.

Leaird, D. E.

Liu, Y.

Y. Liu, S.-G. Park, and A. M. Weiner, IEEE J. Sel. Top. Quant. Electron. 2, 709 (1996).
[CrossRef]

Mait, J. N.

Park, S.-G.

Y. Liu, S.-G. Park, and A. M. Weiner, IEEE J. Sel. Top. Quant. Electron. 2, 709 (1996).
[CrossRef]

Reynaud, F.

Saxena, V.

B. Jalali, P. Kelkar, and V. Saxena, in Proceedings of the 14th Annual Meeting of the IEEE (IEEE Lasers and Electro-Optics Society, Piscataway, N.J., 2001), pp. 253–254.

Tamura, K.

K. Tamura, H. A. Haus, and E. P. Ippen, Electron. Lett. 28, 2226 (1992).
[CrossRef]

Weiner, A. M.

D. E. Leaird and A. M. Weiner, IEEE J. Quantum Electron. 37, 494 (2001).
[CrossRef]

A. M. Weiner, Rev. Sci. Instrum. 71, 1929 (2000).
[CrossRef]

D. E. Leaird and A. M. Weiner, Opt. Lett. 25, 850 (2000).
[CrossRef]

D. E. Leaird and A. M. Weiner, Opt. Lett. 24, 853 (1999).
[CrossRef]

Y. Liu, S.-G. Park, and A. M. Weiner, IEEE J. Sel. Top. Quant. Electron. 2, 709 (1996).
[CrossRef]

Electron. Lett. (1)

K. Tamura, H. A. Haus, and E. P. Ippen, Electron. Lett. 28, 2226 (1992).
[CrossRef]

IEEE J. Quantum Electron. (1)

D. E. Leaird and A. M. Weiner, IEEE J. Quantum Electron. 37, 494 (2001).
[CrossRef]

IEEE J. Sel. Top. Quant. Electron. (1)

Y. Liu, S.-G. Park, and A. M. Weiner, IEEE J. Sel. Top. Quant. Electron. 2, 709 (1996).
[CrossRef]

J. Opt. Soc. Am. A (1)

Opt. Lett. (3)

Rev. Sci. Instrum. (1)

A. M. Weiner, Rev. Sci. Instrum. 71, 1929 (2000).
[CrossRef]

Other (1)

B. Jalali, P. Kelkar, and V. Saxena, in Proceedings of the 14th Annual Meeting of the IEEE (IEEE Lasers and Electro-Optics Society, Piscataway, N.J., 2001), pp. 253–254.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

1.5µm DST pulse shaper.

Fig. 2
Fig. 2

Schematic diagram of the experimental setup. Fs, femtosecond; RF, radio-frequency.

Fig. 3
Fig. 3

(a) 48-GHz mm-wave burst, (b) 38 GHz mm-wave burst. The mm-wave signals can be seen to be good sinusoids, in contrast to the optical pulse sequences driving the photodiode (bottom traces).

Fig. 4
Fig. 4

Example of mm-wave phase modulation. The phase of the mm-wave waveform can be adjusted by changes in the relative timing of pulses in the driving optical waveform.

Fig. 5
Fig. 5

Example of mm-wave frequency modulation. (a) mm-wave data and 48- and 24-GHz sinusoidal fits. (b) Predicted mm-wave data based on the convolution of the driving optical waveform and the electrical system’s impulse response. (c) Cross-correlation measurement of the driving optical waveform.

Metrics