Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Visible laser self-focusing in hybrid glass planar waveguides

Not Accessible

Your library or personal account may give you access

Abstract

We report that self-focusing occurs with simultaneous self-inscription of a cylindrical waveguide when 514.5-nm light from a cw argon-ion laser propagates in a solgel-derived silica methacrylate hybrid glass planar waveguide. Spatially localized free-radical polymerization of methacrylate substituents is initiated in the path of the guided wave. This causes intensity-dependent refractive-index changes that lead to self-lensing and focusing. A channel waveguide evolves in the matrix, which supports fundamental and higher-order optical modes and suppresses diffraction of the beam.

© 2002 Optical Society of America

Full Article  |  PDF Article
More Like This
Quasi-solitonic behavior of self-written waveguides created by photopolymerization

Kokou Dorkenoo, Olivier Crégut, Loïc Mager, Fabrice Gillot, Christiane Carre, and Alain Fort
Opt. Lett. 27(20) 1782-1784 (2002)

Strong self-phase modulation in planar chalcogenide glass waveguides

S. Spälter, H. Y. Hwang, J. Zimmermann, G. Lenz, T. Katsufuji, S.-W. Cheong, and R. E. Slusher
Opt. Lett. 27(5) 363-365 (2002)

Self-written waveguides in photopolymerizable resins

Satoru Shoji, Satoshi Kawata, Andrey A. Sukhorukov, and Yuri S. Kivshar
Opt. Lett. 27(3) 185-187 (2002)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (3)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.