Abstract

Nanometer vibration analysis of a target has been demonstrated by a self-aligned optical feedback vibrometry technique that uses a laser-diode-pumped microchip solid-state laser. The laser output waveform, which was modulated through interference between a lasing field and an extremely weak <-100dB frequency-modulated (FM) feedback field, was analyzed by the Hilbert transformation to yield the vibration waveform of the target. Experimental signal characteristics have been reproduced by numerical simulations. Real-time vibration measurement has also been achieved with a simple FM demodulation circuit.

© 2002 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. Otsuka, IEEE J. Quantum Electron. QE-15, 655 (1979).
    [CrossRef]
  2. K. Otsuka, Jpn. J. Appl. Phys. 31, L1546 (1992).
    [CrossRef]
  3. R. Kawai, Y. Asakawa, and K. Otsuka, IEEE J. Photon. Technol. Lett. 11, 706 (1999).
    [CrossRef]
  4. K. Otsuka, R. Kawai, Y. Asakawa, and T. Fukazawa, Opt. Lett. 24, 1862 (1999).
    [CrossRef]
  5. E. Lacot, R. Day, and F. Stoeckel, Opt. Lett. 24, 744 (1999).
    [CrossRef]
  6. T. Sekine, K. Shimizu, and K. Otsuka, Proc. SPIE 4630, 41 (2002).
    [CrossRef]
  7. H. Toda, M. Haruna, and N. Nishihara, Electron. Lett. 22, 982 (1986).
    [CrossRef]
  8. H. Toda, M. Haruna, and N. Nishihara, IEEE J. Lightwave Technol. LT-5, 901 (1987).
    [CrossRef]
  9. P. G. Suchoski, J. P. Waters, and M. R. Fernald, IEEE J. Photon. Technol. Lett. 2, 81 (1990).
    [CrossRef]
  10. F. F. M. de Mul, L. Scalise, A. L. Petoukhova, M. van Herwijnen, P. Moes, and W. Steenbergen, Appl. Opt. 41, 658 (2002).
    [CrossRef] [PubMed]
  11. P. J. de Groot and G. M. Gallatin, Opt. Lett. 14, 165 (1989).
    [CrossRef] [PubMed]
  12. M. H. Koelink, F. F. M. de Mul, A. L. Weijers, J. Greve, R. Graaff, A. C. M. Dassel, and J. G. Aarnoudse, Appl. Opt. 33, 5628 (1994).
    [CrossRef] [PubMed]
  13. L. Scalise, W. Steenbergen, and F. de Mul, Appl. Opt. 25, 4608 (2001).
    [CrossRef]
  14. D. Gabor, J. IEEE (London) 93, 429 (1946).
  15. K. Otsuka, J.-Y. Ko, and T. Kubota, Opt. Lett. 26, 638 (2001).
    [CrossRef]
  16. J.-Y. Ko, K. Otsuka, and T. Kubota, Phys. Rev. Lett. 86, 4025 (2001).
    [CrossRef] [PubMed]

2002 (2)

2001 (3)

L. Scalise, W. Steenbergen, and F. de Mul, Appl. Opt. 25, 4608 (2001).
[CrossRef]

K. Otsuka, J.-Y. Ko, and T. Kubota, Opt. Lett. 26, 638 (2001).
[CrossRef]

J.-Y. Ko, K. Otsuka, and T. Kubota, Phys. Rev. Lett. 86, 4025 (2001).
[CrossRef] [PubMed]

1999 (3)

1994 (1)

1992 (1)

K. Otsuka, Jpn. J. Appl. Phys. 31, L1546 (1992).
[CrossRef]

1990 (1)

P. G. Suchoski, J. P. Waters, and M. R. Fernald, IEEE J. Photon. Technol. Lett. 2, 81 (1990).
[CrossRef]

1989 (1)

1987 (1)

H. Toda, M. Haruna, and N. Nishihara, IEEE J. Lightwave Technol. LT-5, 901 (1987).
[CrossRef]

1986 (1)

H. Toda, M. Haruna, and N. Nishihara, Electron. Lett. 22, 982 (1986).
[CrossRef]

1979 (1)

K. Otsuka, IEEE J. Quantum Electron. QE-15, 655 (1979).
[CrossRef]

1946 (1)

D. Gabor, J. IEEE (London) 93, 429 (1946).

Aarnoudse, J. G.

Asakawa, Y.

R. Kawai, Y. Asakawa, and K. Otsuka, IEEE J. Photon. Technol. Lett. 11, 706 (1999).
[CrossRef]

K. Otsuka, R. Kawai, Y. Asakawa, and T. Fukazawa, Opt. Lett. 24, 1862 (1999).
[CrossRef]

Dassel, A. C. M.

Day, R.

de Groot, P. J.

de Mul, F.

L. Scalise, W. Steenbergen, and F. de Mul, Appl. Opt. 25, 4608 (2001).
[CrossRef]

de Mul, F. F. M.

Fernald, M. R.

P. G. Suchoski, J. P. Waters, and M. R. Fernald, IEEE J. Photon. Technol. Lett. 2, 81 (1990).
[CrossRef]

Fukazawa, T.

Gabor, D.

D. Gabor, J. IEEE (London) 93, 429 (1946).

Gallatin, G. M.

Graaff, R.

Greve, J.

Haruna, M.

H. Toda, M. Haruna, and N. Nishihara, IEEE J. Lightwave Technol. LT-5, 901 (1987).
[CrossRef]

H. Toda, M. Haruna, and N. Nishihara, Electron. Lett. 22, 982 (1986).
[CrossRef]

Kawai, R.

R. Kawai, Y. Asakawa, and K. Otsuka, IEEE J. Photon. Technol. Lett. 11, 706 (1999).
[CrossRef]

K. Otsuka, R. Kawai, Y. Asakawa, and T. Fukazawa, Opt. Lett. 24, 1862 (1999).
[CrossRef]

Ko, J.-Y.

K. Otsuka, J.-Y. Ko, and T. Kubota, Opt. Lett. 26, 638 (2001).
[CrossRef]

J.-Y. Ko, K. Otsuka, and T. Kubota, Phys. Rev. Lett. 86, 4025 (2001).
[CrossRef] [PubMed]

Koelink, M. H.

Kubota, T.

J.-Y. Ko, K. Otsuka, and T. Kubota, Phys. Rev. Lett. 86, 4025 (2001).
[CrossRef] [PubMed]

K. Otsuka, J.-Y. Ko, and T. Kubota, Opt. Lett. 26, 638 (2001).
[CrossRef]

Lacot, E.

Moes, P.

Nishihara, N.

H. Toda, M. Haruna, and N. Nishihara, IEEE J. Lightwave Technol. LT-5, 901 (1987).
[CrossRef]

H. Toda, M. Haruna, and N. Nishihara, Electron. Lett. 22, 982 (1986).
[CrossRef]

Otsuka, K.

T. Sekine, K. Shimizu, and K. Otsuka, Proc. SPIE 4630, 41 (2002).
[CrossRef]

K. Otsuka, J.-Y. Ko, and T. Kubota, Opt. Lett. 26, 638 (2001).
[CrossRef]

J.-Y. Ko, K. Otsuka, and T. Kubota, Phys. Rev. Lett. 86, 4025 (2001).
[CrossRef] [PubMed]

R. Kawai, Y. Asakawa, and K. Otsuka, IEEE J. Photon. Technol. Lett. 11, 706 (1999).
[CrossRef]

K. Otsuka, R. Kawai, Y. Asakawa, and T. Fukazawa, Opt. Lett. 24, 1862 (1999).
[CrossRef]

K. Otsuka, Jpn. J. Appl. Phys. 31, L1546 (1992).
[CrossRef]

K. Otsuka, IEEE J. Quantum Electron. QE-15, 655 (1979).
[CrossRef]

Petoukhova, A. L.

Scalise, L.

Sekine, T.

T. Sekine, K. Shimizu, and K. Otsuka, Proc. SPIE 4630, 41 (2002).
[CrossRef]

Shimizu, K.

T. Sekine, K. Shimizu, and K. Otsuka, Proc. SPIE 4630, 41 (2002).
[CrossRef]

Steenbergen, W.

Stoeckel, F.

Suchoski, P. G.

P. G. Suchoski, J. P. Waters, and M. R. Fernald, IEEE J. Photon. Technol. Lett. 2, 81 (1990).
[CrossRef]

Toda, H.

H. Toda, M. Haruna, and N. Nishihara, IEEE J. Lightwave Technol. LT-5, 901 (1987).
[CrossRef]

H. Toda, M. Haruna, and N. Nishihara, Electron. Lett. 22, 982 (1986).
[CrossRef]

van Herwijnen, M.

Waters, J. P.

P. G. Suchoski, J. P. Waters, and M. R. Fernald, IEEE J. Photon. Technol. Lett. 2, 81 (1990).
[CrossRef]

Weijers, A. L.

Appl. Opt. (3)

Electron. Lett. (1)

H. Toda, M. Haruna, and N. Nishihara, Electron. Lett. 22, 982 (1986).
[CrossRef]

IEEE J. Lightwave Technol. (1)

H. Toda, M. Haruna, and N. Nishihara, IEEE J. Lightwave Technol. LT-5, 901 (1987).
[CrossRef]

IEEE J. Photon. Technol. Lett. (2)

P. G. Suchoski, J. P. Waters, and M. R. Fernald, IEEE J. Photon. Technol. Lett. 2, 81 (1990).
[CrossRef]

R. Kawai, Y. Asakawa, and K. Otsuka, IEEE J. Photon. Technol. Lett. 11, 706 (1999).
[CrossRef]

IEEE J. Quantum Electron. (1)

K. Otsuka, IEEE J. Quantum Electron. QE-15, 655 (1979).
[CrossRef]

J. IEEE (London) (1)

D. Gabor, J. IEEE (London) 93, 429 (1946).

Jpn. J. Appl. Phys. (1)

K. Otsuka, Jpn. J. Appl. Phys. 31, L1546 (1992).
[CrossRef]

Opt. Lett. (4)

Phys. Rev. Lett. (1)

J.-Y. Ko, K. Otsuka, and T. Kubota, Phys. Rev. Lett. 86, 4025 (2001).
[CrossRef] [PubMed]

Proc. SPIE (1)

T. Sekine, K. Shimizu, and K. Otsuka, Proc. SPIE 4630, 41 (2002).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Experimental configuration of self-mixing laser-Doppler vibrometry and optical microphony: LD, laser diode; APP, anomorphic prism pairs; OL, microscope objective lens; BS, glass-plate beam splitter; PD, photodiode receiver; SA, rf spectrum analyzer; VA, variable attenuator; DO, digital oscilloscope; DC, frequency demodulation circuit; PC, personal computer.

Fig. 2
Fig. 2

(a) Power spectra (long-time average) for several applied voltages. (b) Maximum vibration amplitude versus voltage applied to the speaker. The LNP output power was 5 mW. Carrier frequency, Δω/2π=500 kHz; modulation frequency, fm=ωm/2π=8.42 kHz.

Fig. 3
Fig. 3

Left, frequency-modulation waveforms and right, vibration waveforms for different feedback ratios (a) without an attenuator, in which the nominal feedback ratio is estimated to be -100 dB from correspondence with the numerical result, and (b) for an additional attenuation value of -12.0 dB. Carrier frequency, 2 MHz; modulation frequency, 8.42 kHz; applied voltage, 1 V.

Fig. 4
Fig. 4

Numerical results: (a) modulated waveform, (b) detailed waveform, (c) vibration amplitude, (d) power spectrum (long-time average).

Fig. 5
Fig. 5

In situ measurement of vibration waveforms and their power spectra for different modulation frequencies. Modulation frequency fm: (a) 5.13 kHz, (b) 6.75 kHz. Applied voltage, 1 V; carrier frequency, 2 MHz.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

dNt/dt=Kw-1-Nt-1+2NtEt2,
dEt/dt=NtEt+mEt-tD×cosΨt+2Nt+11/2ξt,
dϕt/dt=Et-tD/Etsin Ψt,
Ψt=ΔΩt+β sin Ωmt-ϕt+ϕt-tD-Ω0+ΔΩ/2tD.

Metrics