Abstract

The optical properties of VO2 nanoparticles formed in an amorphous SiO2 host by stoichiometric ion implantation of vanadium and oxygen and thermal annealing have been determined and correlated with the particle size and morphology. The results show that that the temperature-controlled semiconductor-to-metal phase transition of the VO2 nanophase precipitates turns on the classical surface plasmon resonance, with specific features that depend on the size and aspect ratio of the VO2 particles. This effect improves the optical contrast between the metallic and semiconducting states in the near-IR region of the spectrum as a result of dielectric confinement that is due to the SiO2 host. A fiber-optic application is demonstrated, as is the ability to control the characteristics of the phase transition by using ion implantation to dope the VO2 nanoparticles with tungsten or titanium ions.

© 2002 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. F. J. Morin, Phys. Rev. Lett. 3, 34 (1959).
    [CrossRef]
  2. J. B. Goodenough, J. Solid State Chem. 3, 490 (1971).
    [CrossRef]
  3. D. Paquet and P. Leroux-Hugon, Phys. Rev. B 22, 5284 (1980).
    [CrossRef]
  4. M. Gupta, A. J. Freeman, and D. E. Ellis, Phys. Rev. B 16, 3338 (1977).
    [CrossRef]
  5. R. M. Wentzcovitch, W. W. Shultz, and P. B. Allen, Phys. Rev. Lett. 72, 3389 (1994).
    [CrossRef] [PubMed]
  6. T. Chrismann, B. Felde, W. Niessner, D. Schalch, and A. Sharmann, Solid Thin Films 287, 134 (1996).
    [CrossRef]
  7. J. F. DeNatale, P. J. Hood, and A. B. Harker, J. Appl. Phys. 66, 5844 (1989).
    [CrossRef]
  8. C. G. Granqvist, Phys. Scr. 32, 401 (1985).
    [CrossRef]
  9. M. Fukuma, S. Zembutsu, and S. Miyazawa, Appl. Opt. 22, 265 (1983).
    [CrossRef] [PubMed]
  10. W. R. Roach, Appl. Phys. Lett. 19, 453 (1971).
    [CrossRef]
  11. C. E. Lee, R. A. Atkins, W. N. Giler, and H. F. Taylor, Appl. Opt. 28, 4511 (1989).
    [CrossRef] [PubMed]
  12. Heat transfer considerations may limit the speed of the reverse transition.
  13. A. Cavalleri, Cs. Tóth, C. W. Siders, J. A. Squier, F. Ráksi, P. Forget, and J. C. Kieffer, Phys. Rev. Lett. 87, 237401 (2001).
    [CrossRef]
  14. C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, New York, 1983).
  15. R. Lopez, L. A. Boatner, T. E. Haynes, R. F. Haglund, and L. C. Feldman, Appl. Phys. Lett. 79, 3161 (2001).
    [CrossRef]
  16. R. Lopez, L. A. Boatner, T. E. Haynes, R. F. Haglund, and L. C. Feldman, “Synthesis and characterization of size-controlled VO2 nanocrystals in a pulsed silica matrix,” J. Appl. Phys. (to be published).
  17. The Rayleigh condition strictly requires that ka≤1/20. The VO2 particles are closer to ka≤1/5. However, as proved by a complete calculation with Mie scattering theory12 for spherical particles, the deviations within the present approximation do not alter the main qualitative features.
  18. H. C. van de Hulst, Light Scattering by Small Particles (Dover, New York, 1981).
  19. H. W. Verleur, A. S. Baker, and C. N. Berglund, Phys. Rev. 172, 788 (1968).
    [CrossRef]

2001 (2)

A. Cavalleri, Cs. Tóth, C. W. Siders, J. A. Squier, F. Ráksi, P. Forget, and J. C. Kieffer, Phys. Rev. Lett. 87, 237401 (2001).
[CrossRef]

R. Lopez, L. A. Boatner, T. E. Haynes, R. F. Haglund, and L. C. Feldman, Appl. Phys. Lett. 79, 3161 (2001).
[CrossRef]

1996 (1)

T. Chrismann, B. Felde, W. Niessner, D. Schalch, and A. Sharmann, Solid Thin Films 287, 134 (1996).
[CrossRef]

1994 (1)

R. M. Wentzcovitch, W. W. Shultz, and P. B. Allen, Phys. Rev. Lett. 72, 3389 (1994).
[CrossRef] [PubMed]

1989 (2)

C. E. Lee, R. A. Atkins, W. N. Giler, and H. F. Taylor, Appl. Opt. 28, 4511 (1989).
[CrossRef] [PubMed]

J. F. DeNatale, P. J. Hood, and A. B. Harker, J. Appl. Phys. 66, 5844 (1989).
[CrossRef]

1985 (1)

C. G. Granqvist, Phys. Scr. 32, 401 (1985).
[CrossRef]

1983 (1)

1980 (1)

D. Paquet and P. Leroux-Hugon, Phys. Rev. B 22, 5284 (1980).
[CrossRef]

1977 (1)

M. Gupta, A. J. Freeman, and D. E. Ellis, Phys. Rev. B 16, 3338 (1977).
[CrossRef]

1971 (2)

J. B. Goodenough, J. Solid State Chem. 3, 490 (1971).
[CrossRef]

W. R. Roach, Appl. Phys. Lett. 19, 453 (1971).
[CrossRef]

1968 (1)

H. W. Verleur, A. S. Baker, and C. N. Berglund, Phys. Rev. 172, 788 (1968).
[CrossRef]

1959 (1)

F. J. Morin, Phys. Rev. Lett. 3, 34 (1959).
[CrossRef]

Allen, P. B.

R. M. Wentzcovitch, W. W. Shultz, and P. B. Allen, Phys. Rev. Lett. 72, 3389 (1994).
[CrossRef] [PubMed]

Atkins, R. A.

Baker, A. S.

H. W. Verleur, A. S. Baker, and C. N. Berglund, Phys. Rev. 172, 788 (1968).
[CrossRef]

Berglund, C. N.

H. W. Verleur, A. S. Baker, and C. N. Berglund, Phys. Rev. 172, 788 (1968).
[CrossRef]

Boatner, L. A.

R. Lopez, L. A. Boatner, T. E. Haynes, R. F. Haglund, and L. C. Feldman, Appl. Phys. Lett. 79, 3161 (2001).
[CrossRef]

R. Lopez, L. A. Boatner, T. E. Haynes, R. F. Haglund, and L. C. Feldman, “Synthesis and characterization of size-controlled VO2 nanocrystals in a pulsed silica matrix,” J. Appl. Phys. (to be published).

Bohren, C. F.

C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, New York, 1983).

Cavalleri, A.

A. Cavalleri, Cs. Tóth, C. W. Siders, J. A. Squier, F. Ráksi, P. Forget, and J. C. Kieffer, Phys. Rev. Lett. 87, 237401 (2001).
[CrossRef]

Chrismann, T.

T. Chrismann, B. Felde, W. Niessner, D. Schalch, and A. Sharmann, Solid Thin Films 287, 134 (1996).
[CrossRef]

DeNatale, J. F.

J. F. DeNatale, P. J. Hood, and A. B. Harker, J. Appl. Phys. 66, 5844 (1989).
[CrossRef]

Ellis, D. E.

M. Gupta, A. J. Freeman, and D. E. Ellis, Phys. Rev. B 16, 3338 (1977).
[CrossRef]

Felde, B.

T. Chrismann, B. Felde, W. Niessner, D. Schalch, and A. Sharmann, Solid Thin Films 287, 134 (1996).
[CrossRef]

Feldman, L. C.

R. Lopez, L. A. Boatner, T. E. Haynes, R. F. Haglund, and L. C. Feldman, Appl. Phys. Lett. 79, 3161 (2001).
[CrossRef]

R. Lopez, L. A. Boatner, T. E. Haynes, R. F. Haglund, and L. C. Feldman, “Synthesis and characterization of size-controlled VO2 nanocrystals in a pulsed silica matrix,” J. Appl. Phys. (to be published).

Forget, P.

A. Cavalleri, Cs. Tóth, C. W. Siders, J. A. Squier, F. Ráksi, P. Forget, and J. C. Kieffer, Phys. Rev. Lett. 87, 237401 (2001).
[CrossRef]

Freeman, A. J.

M. Gupta, A. J. Freeman, and D. E. Ellis, Phys. Rev. B 16, 3338 (1977).
[CrossRef]

Fukuma, M.

Giler, W. N.

Goodenough, J. B.

J. B. Goodenough, J. Solid State Chem. 3, 490 (1971).
[CrossRef]

Granqvist, C. G.

C. G. Granqvist, Phys. Scr. 32, 401 (1985).
[CrossRef]

Gupta, M.

M. Gupta, A. J. Freeman, and D. E. Ellis, Phys. Rev. B 16, 3338 (1977).
[CrossRef]

Haglund, R. F.

R. Lopez, L. A. Boatner, T. E. Haynes, R. F. Haglund, and L. C. Feldman, Appl. Phys. Lett. 79, 3161 (2001).
[CrossRef]

R. Lopez, L. A. Boatner, T. E. Haynes, R. F. Haglund, and L. C. Feldman, “Synthesis and characterization of size-controlled VO2 nanocrystals in a pulsed silica matrix,” J. Appl. Phys. (to be published).

Harker, A. B.

J. F. DeNatale, P. J. Hood, and A. B. Harker, J. Appl. Phys. 66, 5844 (1989).
[CrossRef]

Haynes, T. E.

R. Lopez, L. A. Boatner, T. E. Haynes, R. F. Haglund, and L. C. Feldman, Appl. Phys. Lett. 79, 3161 (2001).
[CrossRef]

R. Lopez, L. A. Boatner, T. E. Haynes, R. F. Haglund, and L. C. Feldman, “Synthesis and characterization of size-controlled VO2 nanocrystals in a pulsed silica matrix,” J. Appl. Phys. (to be published).

Hood, P. J.

J. F. DeNatale, P. J. Hood, and A. B. Harker, J. Appl. Phys. 66, 5844 (1989).
[CrossRef]

Huffman, D. R.

C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, New York, 1983).

Kieffer, J. C.

A. Cavalleri, Cs. Tóth, C. W. Siders, J. A. Squier, F. Ráksi, P. Forget, and J. C. Kieffer, Phys. Rev. Lett. 87, 237401 (2001).
[CrossRef]

Lee, C. E.

Leroux-Hugon, P.

D. Paquet and P. Leroux-Hugon, Phys. Rev. B 22, 5284 (1980).
[CrossRef]

Lopez, R.

R. Lopez, L. A. Boatner, T. E. Haynes, R. F. Haglund, and L. C. Feldman, Appl. Phys. Lett. 79, 3161 (2001).
[CrossRef]

R. Lopez, L. A. Boatner, T. E. Haynes, R. F. Haglund, and L. C. Feldman, “Synthesis and characterization of size-controlled VO2 nanocrystals in a pulsed silica matrix,” J. Appl. Phys. (to be published).

Miyazawa, S.

Morin, F. J.

F. J. Morin, Phys. Rev. Lett. 3, 34 (1959).
[CrossRef]

Niessner, W.

T. Chrismann, B. Felde, W. Niessner, D. Schalch, and A. Sharmann, Solid Thin Films 287, 134 (1996).
[CrossRef]

Paquet, D.

D. Paquet and P. Leroux-Hugon, Phys. Rev. B 22, 5284 (1980).
[CrossRef]

Ráksi, F.

A. Cavalleri, Cs. Tóth, C. W. Siders, J. A. Squier, F. Ráksi, P. Forget, and J. C. Kieffer, Phys. Rev. Lett. 87, 237401 (2001).
[CrossRef]

Roach, W. R.

W. R. Roach, Appl. Phys. Lett. 19, 453 (1971).
[CrossRef]

Schalch, D.

T. Chrismann, B. Felde, W. Niessner, D. Schalch, and A. Sharmann, Solid Thin Films 287, 134 (1996).
[CrossRef]

Sharmann, A.

T. Chrismann, B. Felde, W. Niessner, D. Schalch, and A. Sharmann, Solid Thin Films 287, 134 (1996).
[CrossRef]

Shultz, W. W.

R. M. Wentzcovitch, W. W. Shultz, and P. B. Allen, Phys. Rev. Lett. 72, 3389 (1994).
[CrossRef] [PubMed]

Siders, C. W.

A. Cavalleri, Cs. Tóth, C. W. Siders, J. A. Squier, F. Ráksi, P. Forget, and J. C. Kieffer, Phys. Rev. Lett. 87, 237401 (2001).
[CrossRef]

Squier, J. A.

A. Cavalleri, Cs. Tóth, C. W. Siders, J. A. Squier, F. Ráksi, P. Forget, and J. C. Kieffer, Phys. Rev. Lett. 87, 237401 (2001).
[CrossRef]

Taylor, H. F.

Tóth, Cs.

A. Cavalleri, Cs. Tóth, C. W. Siders, J. A. Squier, F. Ráksi, P. Forget, and J. C. Kieffer, Phys. Rev. Lett. 87, 237401 (2001).
[CrossRef]

van de Hulst, H. C.

H. C. van de Hulst, Light Scattering by Small Particles (Dover, New York, 1981).

Verleur, H. W.

H. W. Verleur, A. S. Baker, and C. N. Berglund, Phys. Rev. 172, 788 (1968).
[CrossRef]

Wentzcovitch, R. M.

R. M. Wentzcovitch, W. W. Shultz, and P. B. Allen, Phys. Rev. Lett. 72, 3389 (1994).
[CrossRef] [PubMed]

Zembutsu, S.

Appl. Opt. (2)

Appl. Phys. Lett. (2)

R. Lopez, L. A. Boatner, T. E. Haynes, R. F. Haglund, and L. C. Feldman, Appl. Phys. Lett. 79, 3161 (2001).
[CrossRef]

W. R. Roach, Appl. Phys. Lett. 19, 453 (1971).
[CrossRef]

J. Appl. Phys. (1)

J. F. DeNatale, P. J. Hood, and A. B. Harker, J. Appl. Phys. 66, 5844 (1989).
[CrossRef]

J. Solid State Chem. (1)

J. B. Goodenough, J. Solid State Chem. 3, 490 (1971).
[CrossRef]

Phys. Rev. (1)

H. W. Verleur, A. S. Baker, and C. N. Berglund, Phys. Rev. 172, 788 (1968).
[CrossRef]

Phys. Rev. B (2)

D. Paquet and P. Leroux-Hugon, Phys. Rev. B 22, 5284 (1980).
[CrossRef]

M. Gupta, A. J. Freeman, and D. E. Ellis, Phys. Rev. B 16, 3338 (1977).
[CrossRef]

Phys. Rev. Lett. (3)

R. M. Wentzcovitch, W. W. Shultz, and P. B. Allen, Phys. Rev. Lett. 72, 3389 (1994).
[CrossRef] [PubMed]

A. Cavalleri, Cs. Tóth, C. W. Siders, J. A. Squier, F. Ráksi, P. Forget, and J. C. Kieffer, Phys. Rev. Lett. 87, 237401 (2001).
[CrossRef]

F. J. Morin, Phys. Rev. Lett. 3, 34 (1959).
[CrossRef]

Phys. Scr. (1)

C. G. Granqvist, Phys. Scr. 32, 401 (1985).
[CrossRef]

Solid Thin Films (1)

T. Chrismann, B. Felde, W. Niessner, D. Schalch, and A. Sharmann, Solid Thin Films 287, 134 (1996).
[CrossRef]

Other (5)

C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, New York, 1983).

Heat transfer considerations may limit the speed of the reverse transition.

R. Lopez, L. A. Boatner, T. E. Haynes, R. F. Haglund, and L. C. Feldman, “Synthesis and characterization of size-controlled VO2 nanocrystals in a pulsed silica matrix,” J. Appl. Phys. (to be published).

The Rayleigh condition strictly requires that ka≤1/20. The VO2 particles are closer to ka≤1/5. However, as proved by a complete calculation with Mie scattering theory12 for spherical particles, the deviations within the present approximation do not alter the main qualitative features.

H. C. van de Hulst, Light Scattering by Small Particles (Dover, New York, 1981).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

(a) Transmission electron microscopy image (bright field, mass contrast) of VO2 nanorods formed after annealing of the implanted substrate for 60 min. (b) Equivalent mean radius and mean aspect ratio for a series of annealing times. Samples were prepared by implanting SiO2 with 1.5×1017 V ions/cm2 at 150 keV and 3.0×1017 O ions/cm2 at 55 keV and then annealing in argon at 1000 °C.

Fig. 2
Fig. 2

Optical density versus wavelength in the semiconducting (25 °C) and the metallic (100 °C) states of VO2 nanoparticles with different mean aspect ratios: (a) 1.3, (b) 1.9, and (c) 3.5. (d) Extinction cross-section efficiencies calculated with the dipole approximation for VO2 nanoparticles in the metallic state with different aspect ratios b/a.

Fig. 3
Fig. 3

Optical switching of VO2 precipitates in the end of an optical fiber.

Fig. 4
Fig. 4

Effect of tungsten and titanium doping on the transition temperatures of VO2 precipitates formed by ion implantation. Samples were prepared by implanting SiO2 with 1.5×1017 vanadium ions/cm2 at 150 keV and 3.0×1017 O ions/cm2 at 55 keV and later annealing in argon at 1000 °C for 30 min. The doping percentages shown express the implanted dopant fluence as a fraction of the vanadium fluence. The relative optical transmission curves were measured with unpolarized light at a wavelength of 1.5 µm.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

Qext=-2ka32L11-m-2m1-L1+1L1m1-L1+1L12+2L12+221-L11-m-2m1-L1+11-L1m1+L1+11-L12+21-L12,
L1=1-e2e212eln1+e1-e-1,    e2=1-b/a-2.

Metrics