Abstract

Temporal bound solitons are observed experimentally in a passively mode-locked figure-eight fiber laser with a dispersion-imbalanced nonlinear optical loop mirror (DI-NOLM). Soliton interactions are suppressed by use of a spectral bandpass filter, and Gordon–Haus timing jitter is eliminated with a DI-NOLM, which removes the cw light component in the laser cavity. The bound solitons are found to be stable for several hours in the laser cavity when no external perturbation is applied.

© 2002 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. L. F. Mollenauer, E. Lichtman, M. J. Neubelt, and G. T. Harvey, Electron. Lett. 29, 910 (1993).
    [CrossRef]
  2. Y. Kodama and S. Wabnitz, Electron. Lett. 27, 1931 (1991).
    [CrossRef]
  3. M. Nakasawa and H. Kubota, Electron. Lett. 28, 958 (1992).
    [CrossRef]
  4. V. V. Afanasjev, Opt. Lett. 18, 790 (1993).
    [CrossRef] [PubMed]
  5. V. V. Afanasjev and N. Akhmediev, Opt. Lett. 19, 1970 (1995).
    [CrossRef]
  6. S. Wabnitz and E. Westin, Opt. Lett. 21, 1235 (1996).
    [CrossRef] [PubMed]
  7. A. B. Grudinin, D. J. Richardson, and D. N. Payne, Electron. Lett. 28, 67 (1992).
    [CrossRef]
  8. W. S. Wong, S. Namiki, M. Margalit, H. A. Haus, and E. P. Ippen, Opt. Lett. 22, 1150 (1997).
    [CrossRef] [PubMed]
  9. N. H. Seong, D. Y. Kim, and S. K. Oh, Electron. Lett. 37, 157 (2001).
    [CrossRef]
  10. G. P. Agrawal, in Nonlinear Fiber Optics, 2nd ed. (Academic, San Diego, Calif., 1995).
  11. S. Wabnitz and E. Westin, Opt. Lett. 21, 1235 (1996).
    [CrossRef] [PubMed]
  12. Y. Kodama and S. Wabnitz, Electron. Lett. 27, 1931 (1991).
    [CrossRef]

2001 (1)

N. H. Seong, D. Y. Kim, and S. K. Oh, Electron. Lett. 37, 157 (2001).
[CrossRef]

1997 (1)

1996 (2)

1995 (1)

1993 (2)

V. V. Afanasjev, Opt. Lett. 18, 790 (1993).
[CrossRef] [PubMed]

L. F. Mollenauer, E. Lichtman, M. J. Neubelt, and G. T. Harvey, Electron. Lett. 29, 910 (1993).
[CrossRef]

1992 (2)

M. Nakasawa and H. Kubota, Electron. Lett. 28, 958 (1992).
[CrossRef]

A. B. Grudinin, D. J. Richardson, and D. N. Payne, Electron. Lett. 28, 67 (1992).
[CrossRef]

1991 (2)

Y. Kodama and S. Wabnitz, Electron. Lett. 27, 1931 (1991).
[CrossRef]

Y. Kodama and S. Wabnitz, Electron. Lett. 27, 1931 (1991).
[CrossRef]

Afanasjev, V. V.

Agrawal, G. P.

G. P. Agrawal, in Nonlinear Fiber Optics, 2nd ed. (Academic, San Diego, Calif., 1995).

Akhmediev, N.

Grudinin, A. B.

A. B. Grudinin, D. J. Richardson, and D. N. Payne, Electron. Lett. 28, 67 (1992).
[CrossRef]

Harvey, G. T.

L. F. Mollenauer, E. Lichtman, M. J. Neubelt, and G. T. Harvey, Electron. Lett. 29, 910 (1993).
[CrossRef]

Haus, H. A.

Ippen, E. P.

Kim, D. Y.

N. H. Seong, D. Y. Kim, and S. K. Oh, Electron. Lett. 37, 157 (2001).
[CrossRef]

Kodama, Y.

Y. Kodama and S. Wabnitz, Electron. Lett. 27, 1931 (1991).
[CrossRef]

Y. Kodama and S. Wabnitz, Electron. Lett. 27, 1931 (1991).
[CrossRef]

Kubota, H.

M. Nakasawa and H. Kubota, Electron. Lett. 28, 958 (1992).
[CrossRef]

Lichtman, E.

L. F. Mollenauer, E. Lichtman, M. J. Neubelt, and G. T. Harvey, Electron. Lett. 29, 910 (1993).
[CrossRef]

Margalit, M.

Mollenauer, L. F.

L. F. Mollenauer, E. Lichtman, M. J. Neubelt, and G. T. Harvey, Electron. Lett. 29, 910 (1993).
[CrossRef]

Nakasawa, M.

M. Nakasawa and H. Kubota, Electron. Lett. 28, 958 (1992).
[CrossRef]

Namiki, S.

Neubelt, M. J.

L. F. Mollenauer, E. Lichtman, M. J. Neubelt, and G. T. Harvey, Electron. Lett. 29, 910 (1993).
[CrossRef]

Oh, S. K.

N. H. Seong, D. Y. Kim, and S. K. Oh, Electron. Lett. 37, 157 (2001).
[CrossRef]

Payne, D. N.

A. B. Grudinin, D. J. Richardson, and D. N. Payne, Electron. Lett. 28, 67 (1992).
[CrossRef]

Richardson, D. J.

A. B. Grudinin, D. J. Richardson, and D. N. Payne, Electron. Lett. 28, 67 (1992).
[CrossRef]

Seong, N. H.

N. H. Seong, D. Y. Kim, and S. K. Oh, Electron. Lett. 37, 157 (2001).
[CrossRef]

Wabnitz, S.

S. Wabnitz and E. Westin, Opt. Lett. 21, 1235 (1996).
[CrossRef] [PubMed]

S. Wabnitz and E. Westin, Opt. Lett. 21, 1235 (1996).
[CrossRef] [PubMed]

Y. Kodama and S. Wabnitz, Electron. Lett. 27, 1931 (1991).
[CrossRef]

Y. Kodama and S. Wabnitz, Electron. Lett. 27, 1931 (1991).
[CrossRef]

Westin, E.

Wong, W. S.

Electron. Lett. (6)

L. F. Mollenauer, E. Lichtman, M. J. Neubelt, and G. T. Harvey, Electron. Lett. 29, 910 (1993).
[CrossRef]

Y. Kodama and S. Wabnitz, Electron. Lett. 27, 1931 (1991).
[CrossRef]

M. Nakasawa and H. Kubota, Electron. Lett. 28, 958 (1992).
[CrossRef]

A. B. Grudinin, D. J. Richardson, and D. N. Payne, Electron. Lett. 28, 67 (1992).
[CrossRef]

N. H. Seong, D. Y. Kim, and S. K. Oh, Electron. Lett. 37, 157 (2001).
[CrossRef]

Y. Kodama and S. Wabnitz, Electron. Lett. 27, 1931 (1991).
[CrossRef]

Opt. Lett. (5)

Other (1)

G. P. Agrawal, in Nonlinear Fiber Optics, 2nd ed. (Academic, San Diego, Calif., 1995).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Experimental setup of a figure-eight fiber laser with a DI-NOLM. DSF, dispersion-shifted fiber; DCF, dispersion-compensating fiber; PCs, polarization controllers; BPF, bandpass filter; SMF, single-mode fiber; LD, laser diode; PI-IS, polarization-insensitive optical isolator; WDM, wavelength-division multiplexer; EDF, erbium-doped fiber; PS-IS, polarization-sensitive optical isolator.

Fig. 2
Fig. 2

Characteristics of the mode-locked pulse train without bound solitons measured by (a) an optical spectrum analyzer, (b) an autocorrelator, and (c) a sampling oscilloscope.

Fig. 3
Fig. 3

Characteristics of the mode-locked pulse train with two-soliton bound states. (a)–(c) are defined in Fig. 2.

Fig. 4
Fig. 4

Characteristics of the mode-locked pulse train with two- and four-soliton bound states. (a)–(c) are as defined in Fig. 2.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

β1eff=β1+gpT221-δ2+i2δ1+δ22

Metrics