Abstract

We demonstrate a simple technique for simultaneous and complete characterization of the optical pulses and temporal modulators commonly used in telecommunication. The electric field of a pulse and the response of a modulator are obtained from the analysis of the two-dimensional spectrogram of the pulse gated by the modulator. The measurement sensitivity is greatly improved compared with the conventional nonlinear optical techniques. Trains of picosecond pulses as weak as 10-17 J are accurately characterized with an electroabsorption modulator as the temporal gate. The time-resolved transmission and phase of the modulator are also presented.

© 2002 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. Nogiwa, Y. Kawaguchi, H. Ohta, and Y. Endo, Electron. Lett. 36, 1727 (2000).
    [CrossRef]
  2. K. Taira and K. Kikuchi, IEEE Photon. Technol. Lett. 13, 505 (2001).
    [CrossRef]
  3. L. A. Jiang, E. P. Ippen, U. Feiste, S. Diesz, E. Hilliger, C. Schmidt, and H.-G. Weber, IEEE J. Quantum Electron. 37, 118 (2001).
    [CrossRef]
  4. I. Walmsley and V. Wong, J. Opt. Soc. Am. B 13, 2453 (1996).
    [CrossRef]
  5. R. Trebino, K. W. Delong, D. N. Fittinghoff, J. N. Sweetser, M. A. Krumbugel, B. A. Richman, and D. J. Kane, Rev. Sci. Instrum. 68, 3277 (1997).
    [CrossRef]
  6. C. Iaconis and I. A. Walmsley, Opt. Lett. 23, 792–794 (1998).
    [CrossRef]
  7. L. Cohen, Proc. IEEE 77, 941 (1989).
    [CrossRef]
  8. K. DeLong, R. Trebino, and B. White, J. Opt. Soc. Am. B 12, 2463–2466 (1995).
    [CrossRef]
  9. H. Stark, ed., Image Recovery: Theory and Application (Academic, San Diego, Calif., 1987).
  10. D. J. Kane, IEEE J. Sel. Top. Quantum Electron. 4, 278 (1998).
    [CrossRef]

2001

K. Taira and K. Kikuchi, IEEE Photon. Technol. Lett. 13, 505 (2001).
[CrossRef]

L. A. Jiang, E. P. Ippen, U. Feiste, S. Diesz, E. Hilliger, C. Schmidt, and H.-G. Weber, IEEE J. Quantum Electron. 37, 118 (2001).
[CrossRef]

2000

S. Nogiwa, Y. Kawaguchi, H. Ohta, and Y. Endo, Electron. Lett. 36, 1727 (2000).
[CrossRef]

1998

C. Iaconis and I. A. Walmsley, Opt. Lett. 23, 792–794 (1998).
[CrossRef]

D. J. Kane, IEEE J. Sel. Top. Quantum Electron. 4, 278 (1998).
[CrossRef]

1997

R. Trebino, K. W. Delong, D. N. Fittinghoff, J. N. Sweetser, M. A. Krumbugel, B. A. Richman, and D. J. Kane, Rev. Sci. Instrum. 68, 3277 (1997).
[CrossRef]

1996

1995

1989

L. Cohen, Proc. IEEE 77, 941 (1989).
[CrossRef]

Cohen, L.

L. Cohen, Proc. IEEE 77, 941 (1989).
[CrossRef]

DeLong, K.

Delong, K. W.

R. Trebino, K. W. Delong, D. N. Fittinghoff, J. N. Sweetser, M. A. Krumbugel, B. A. Richman, and D. J. Kane, Rev. Sci. Instrum. 68, 3277 (1997).
[CrossRef]

Diesz, S.

L. A. Jiang, E. P. Ippen, U. Feiste, S. Diesz, E. Hilliger, C. Schmidt, and H.-G. Weber, IEEE J. Quantum Electron. 37, 118 (2001).
[CrossRef]

Endo, Y.

S. Nogiwa, Y. Kawaguchi, H. Ohta, and Y. Endo, Electron. Lett. 36, 1727 (2000).
[CrossRef]

Feiste, U.

L. A. Jiang, E. P. Ippen, U. Feiste, S. Diesz, E. Hilliger, C. Schmidt, and H.-G. Weber, IEEE J. Quantum Electron. 37, 118 (2001).
[CrossRef]

Fittinghoff, D. N.

R. Trebino, K. W. Delong, D. N. Fittinghoff, J. N. Sweetser, M. A. Krumbugel, B. A. Richman, and D. J. Kane, Rev. Sci. Instrum. 68, 3277 (1997).
[CrossRef]

Hilliger, E.

L. A. Jiang, E. P. Ippen, U. Feiste, S. Diesz, E. Hilliger, C. Schmidt, and H.-G. Weber, IEEE J. Quantum Electron. 37, 118 (2001).
[CrossRef]

Iaconis, C.

Ippen, E. P.

L. A. Jiang, E. P. Ippen, U. Feiste, S. Diesz, E. Hilliger, C. Schmidt, and H.-G. Weber, IEEE J. Quantum Electron. 37, 118 (2001).
[CrossRef]

Jiang, L. A.

L. A. Jiang, E. P. Ippen, U. Feiste, S. Diesz, E. Hilliger, C. Schmidt, and H.-G. Weber, IEEE J. Quantum Electron. 37, 118 (2001).
[CrossRef]

Kane, D. J.

D. J. Kane, IEEE J. Sel. Top. Quantum Electron. 4, 278 (1998).
[CrossRef]

R. Trebino, K. W. Delong, D. N. Fittinghoff, J. N. Sweetser, M. A. Krumbugel, B. A. Richman, and D. J. Kane, Rev. Sci. Instrum. 68, 3277 (1997).
[CrossRef]

Kawaguchi, Y.

S. Nogiwa, Y. Kawaguchi, H. Ohta, and Y. Endo, Electron. Lett. 36, 1727 (2000).
[CrossRef]

Kikuchi, K.

K. Taira and K. Kikuchi, IEEE Photon. Technol. Lett. 13, 505 (2001).
[CrossRef]

Krumbugel, M. A.

R. Trebino, K. W. Delong, D. N. Fittinghoff, J. N. Sweetser, M. A. Krumbugel, B. A. Richman, and D. J. Kane, Rev. Sci. Instrum. 68, 3277 (1997).
[CrossRef]

Nogiwa, S.

S. Nogiwa, Y. Kawaguchi, H. Ohta, and Y. Endo, Electron. Lett. 36, 1727 (2000).
[CrossRef]

Ohta, H.

S. Nogiwa, Y. Kawaguchi, H. Ohta, and Y. Endo, Electron. Lett. 36, 1727 (2000).
[CrossRef]

Richman, B. A.

R. Trebino, K. W. Delong, D. N. Fittinghoff, J. N. Sweetser, M. A. Krumbugel, B. A. Richman, and D. J. Kane, Rev. Sci. Instrum. 68, 3277 (1997).
[CrossRef]

Schmidt, C.

L. A. Jiang, E. P. Ippen, U. Feiste, S. Diesz, E. Hilliger, C. Schmidt, and H.-G. Weber, IEEE J. Quantum Electron. 37, 118 (2001).
[CrossRef]

Sweetser, J. N.

R. Trebino, K. W. Delong, D. N. Fittinghoff, J. N. Sweetser, M. A. Krumbugel, B. A. Richman, and D. J. Kane, Rev. Sci. Instrum. 68, 3277 (1997).
[CrossRef]

Taira, K.

K. Taira and K. Kikuchi, IEEE Photon. Technol. Lett. 13, 505 (2001).
[CrossRef]

Trebino, R.

R. Trebino, K. W. Delong, D. N. Fittinghoff, J. N. Sweetser, M. A. Krumbugel, B. A. Richman, and D. J. Kane, Rev. Sci. Instrum. 68, 3277 (1997).
[CrossRef]

K. DeLong, R. Trebino, and B. White, J. Opt. Soc. Am. B 12, 2463–2466 (1995).
[CrossRef]

Walmsley, I.

Walmsley, I. A.

Weber, H.-G.

L. A. Jiang, E. P. Ippen, U. Feiste, S. Diesz, E. Hilliger, C. Schmidt, and H.-G. Weber, IEEE J. Quantum Electron. 37, 118 (2001).
[CrossRef]

White, B.

Wong, V.

Electron. Lett.

S. Nogiwa, Y. Kawaguchi, H. Ohta, and Y. Endo, Electron. Lett. 36, 1727 (2000).
[CrossRef]

IEEE J. Quantum Electron.

L. A. Jiang, E. P. Ippen, U. Feiste, S. Diesz, E. Hilliger, C. Schmidt, and H.-G. Weber, IEEE J. Quantum Electron. 37, 118 (2001).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron.

D. J. Kane, IEEE J. Sel. Top. Quantum Electron. 4, 278 (1998).
[CrossRef]

IEEE Photon. Technol. Lett.

K. Taira and K. Kikuchi, IEEE Photon. Technol. Lett. 13, 505 (2001).
[CrossRef]

J. Opt. Soc. Am. B

Opt. Lett.

Proc. IEEE

L. Cohen, Proc. IEEE 77, 941 (1989).
[CrossRef]

Rev. Sci. Instrum.

R. Trebino, K. W. Delong, D. N. Fittinghoff, J. N. Sweetser, M. A. Krumbugel, B. A. Richman, and D. J. Kane, Rev. Sci. Instrum. 68, 3277 (1997).
[CrossRef]

Other

H. Stark, ed., Image Recovery: Theory and Application (Academic, San Diego, Calif., 1987).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Schematic of the measurement of a spectrogram for simultaneous retrieval of the electric field of an optical pulse E and the response of a temporal modulator R.

Fig. 2
Fig. 2

Spectral intensity and phase of the initial pulse (no fiber) and of the pulse after a SMF and after a DCF.

Fig. 3
Fig. 3

Temporal intensity of the pulse before the nonlinear fiber (solid curve), after nonlinear propagation (squares), and after linear recompression (dashed curve). The inset shows the intensity of the initial pulse (solid curve) and the induced nonlinear phase (squares).

Fig. 4
Fig. 4

Temporal transmission and phase of the gate obtained with the initial pulse (no fiber), the pulse after linear propagation in a SMF, and the pulse after self-phase modulation (SPM).

Fig. 5
Fig. 5

Temporal intensity and phase of a pulse measured at average powers of 0.1 mW and 0.1 µW.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

Sω,τ=-+Et,τexp-iωtdt2=-+EtRt-τexp-iωt2.

Metrics