Abstract

Timing jitter induced by soliton collisions is the leading nonlinear penalty in wavelength-division-multiplexed (WDM) dispersion-managed soliton transmission. Through analysis and numerical simulations we show that consecutive complete collisions together with partial collisions at the system output cause approximately the same amount of timing shift as partial collisions at the system input. We further show that the worst-case timing shift diverges logarithmically with the total number of WDM channels and linearly with the total transmission distance. However, the probability for such worst cases to occur decreases exponentially with channel spacing, total number of WDM channels, and transmission distance. We conclude that only the effects caused by adjacent channels need to be considered in a high channel count WDM system.

© 2002 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. L. F. Mollenauer, P. V. Mamyshev, J. Gripp, M. J. Neubelt, N. Mamysheva, L. Grüner-Nielsen, and T. Veng, Opt. Lett. 25, 704 (2000).
    [CrossRef]
  2. P. V. Mamyshev and L. F. Mollenauer, Opt. Lett. 24, 448 (1999).
    [CrossRef]
  3. M. J. Ablowitz, G. Biondini, and E. S. Olson, J. Opt. Soc. Am. B 18, 577 (2001).
    [CrossRef]
  4. A. Maruta and H. Sugahara, J. Opt. Soc. Am. B 18, 419 (2000).
  5. F. Lederer, B. A. Malomed, and M. Wald, Opt. Lett. 26, 965 (2001).
    [CrossRef]
  6. J. H. B. Nijhof, N. J. Doran, W. Forysiak, and A. Berntson, Electron. Lett. 34, 481 (1998).
    [CrossRef]

2001 (2)

2000 (2)

1999 (1)

1998 (1)

J. H. B. Nijhof, N. J. Doran, W. Forysiak, and A. Berntson, Electron. Lett. 34, 481 (1998).
[CrossRef]

Ablowitz, M. J.

Berntson, A.

J. H. B. Nijhof, N. J. Doran, W. Forysiak, and A. Berntson, Electron. Lett. 34, 481 (1998).
[CrossRef]

Biondini, G.

Doran, N. J.

J. H. B. Nijhof, N. J. Doran, W. Forysiak, and A. Berntson, Electron. Lett. 34, 481 (1998).
[CrossRef]

Forysiak, W.

J. H. B. Nijhof, N. J. Doran, W. Forysiak, and A. Berntson, Electron. Lett. 34, 481 (1998).
[CrossRef]

Gripp, J.

Grüner-Nielsen, L.

Lederer, F.

Malomed, B. A.

Mamyshev, P. V.

Mamysheva, N.

Maruta, A.

Mollenauer, L. F.

Neubelt, M. J.

Nijhof, J. H. B.

J. H. B. Nijhof, N. J. Doran, W. Forysiak, and A. Berntson, Electron. Lett. 34, 481 (1998).
[CrossRef]

Olson, E. S.

Sugahara, H.

Veng, T.

Wald, M.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

(a) Frequency shifts and (b) timing shifts of NIPCs with one, two, four, and nine pulses. Horizontal axis, transmission distance in units of spans (e.g., 100 km).

Fig. 2
Fig. 2

(a) Frequency shifts and (b) timing shifts of IPCs with three pulses.

Fig. 3
Fig. 3

Worst-case timing shifts of NIPCs at 50-, 100-, and 150-GHz channel separations.

Fig. 4
Fig. 4

Bit sequences used to generate worst-case frequency and timing shifts for NIPCs. The arrows indicate the time windows (i.e., the lengths of 1 and 0 bits) required for the worst-case timing shifts. Ch1, Ch2, channels 1 and 2, respectively.

Fig. 5
Fig. 5

Worst-case timing spread (dashed line) and the probability of such occurrences (solid line) as a function of transmission distances for three WDM channels.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

P12=1/2L/lcoll1/2Lcoll/lcoll1/2,
P123h=1/2L/lcoll1/2Lcoll/lcoll21/2.
P123=P123h2=1/2L/lcoll1/2Lcoll/lcoll41/4.
PN½N2-1ΔλLD¯+D+L+/2T.

Metrics