Abstract

We describe and demonstrate a novel technique for continuously tuning the frequency of a dual-loop-configuration optoelectronic rf oscillator. The rf tunability is obtained from a tunable diode laser and dispersive optical fibers. Results are presented for three ranges of frequency, centered at 550 MHz, 3 GHz, and 9 GHz. The frequency can be tuned electrically with constant rf power within a range of 0.1–1.9 MHz, depending on the center oscillation frequency. The tuning range can be increased eightfold through the use of highly dispersive fibers.

© 2002 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. X. S. Yao and L. Maleki, Electron. Lett. 30, 1525 (1994).
    [CrossRef]
  2. A. Neyer and E. Vosges, Appl. Phys. Lett. 40, 6 (1982).
    [CrossRef]
  3. X. S. Yao and L. Maleki, J. Opt. Soc. Am. B 13, 1725 (1996).
    [CrossRef]
  4. X. S. Yao and L. Maleki, IEEE J. Quantum Electron. 36, 79 (2000).
    [CrossRef]
  5. S. Huang and L. Maleki, IEEE Trans. Freq. Contr. Symp.720 (2001).
  6. G. Keiser, Optical Fiber Communications, 2nd ed., (McGraw-Hill, New York, 1991), p. 118.
  7. S. Römisch and J. Kitching, IEEE Trans. Ultrason. Ferroelectr. Freq. Control 47, 1159 (2000).
    [CrossRef]
  8. A. M. Vengsarkar, in Optical Fiber Communication/International Conference on Integrated Optics and Optical Fiber Communication, Vol. 3 of 1987 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1987), p. 233.
  9. M. R. C. Caputo and M. E. Gouvea, Opt. Commun. 178, 323 (2000).
    [CrossRef]

2001 (1)

S. Huang and L. Maleki, IEEE Trans. Freq. Contr. Symp.720 (2001).

2000 (3)

S. Römisch and J. Kitching, IEEE Trans. Ultrason. Ferroelectr. Freq. Control 47, 1159 (2000).
[CrossRef]

M. R. C. Caputo and M. E. Gouvea, Opt. Commun. 178, 323 (2000).
[CrossRef]

X. S. Yao and L. Maleki, IEEE J. Quantum Electron. 36, 79 (2000).
[CrossRef]

1996 (1)

1994 (1)

X. S. Yao and L. Maleki, Electron. Lett. 30, 1525 (1994).
[CrossRef]

1982 (1)

A. Neyer and E. Vosges, Appl. Phys. Lett. 40, 6 (1982).
[CrossRef]

Caputo, M. R. C.

M. R. C. Caputo and M. E. Gouvea, Opt. Commun. 178, 323 (2000).
[CrossRef]

Gouvea, M. E.

M. R. C. Caputo and M. E. Gouvea, Opt. Commun. 178, 323 (2000).
[CrossRef]

Huang, S.

S. Huang and L. Maleki, IEEE Trans. Freq. Contr. Symp.720 (2001).

Keiser, G.

G. Keiser, Optical Fiber Communications, 2nd ed., (McGraw-Hill, New York, 1991), p. 118.

Kitching, J.

S. Römisch and J. Kitching, IEEE Trans. Ultrason. Ferroelectr. Freq. Control 47, 1159 (2000).
[CrossRef]

Maleki, L.

S. Huang and L. Maleki, IEEE Trans. Freq. Contr. Symp.720 (2001).

X. S. Yao and L. Maleki, IEEE J. Quantum Electron. 36, 79 (2000).
[CrossRef]

X. S. Yao and L. Maleki, J. Opt. Soc. Am. B 13, 1725 (1996).
[CrossRef]

X. S. Yao and L. Maleki, Electron. Lett. 30, 1525 (1994).
[CrossRef]

Neyer, A.

A. Neyer and E. Vosges, Appl. Phys. Lett. 40, 6 (1982).
[CrossRef]

Römisch, S.

S. Römisch and J. Kitching, IEEE Trans. Ultrason. Ferroelectr. Freq. Control 47, 1159 (2000).
[CrossRef]

Vengsarkar, A. M.

A. M. Vengsarkar, in Optical Fiber Communication/International Conference on Integrated Optics and Optical Fiber Communication, Vol. 3 of 1987 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1987), p. 233.

Vosges, E.

A. Neyer and E. Vosges, Appl. Phys. Lett. 40, 6 (1982).
[CrossRef]

Yao, X. S.

X. S. Yao and L. Maleki, IEEE J. Quantum Electron. 36, 79 (2000).
[CrossRef]

X. S. Yao and L. Maleki, J. Opt. Soc. Am. B 13, 1725 (1996).
[CrossRef]

X. S. Yao and L. Maleki, Electron. Lett. 30, 1525 (1994).
[CrossRef]

Appl. Phys. Lett. (1)

A. Neyer and E. Vosges, Appl. Phys. Lett. 40, 6 (1982).
[CrossRef]

Electron. Lett. (1)

X. S. Yao and L. Maleki, Electron. Lett. 30, 1525 (1994).
[CrossRef]

IEEE J. Quantum Electron. (1)

X. S. Yao and L. Maleki, IEEE J. Quantum Electron. 36, 79 (2000).
[CrossRef]

IEEE Trans. Freq. Contr. Symp. (1)

S. Huang and L. Maleki, IEEE Trans. Freq. Contr. Symp.720 (2001).

IEEE Trans. Ultrason. Ferroelectr. Freq. Control (1)

S. Römisch and J. Kitching, IEEE Trans. Ultrason. Ferroelectr. Freq. Control 47, 1159 (2000).
[CrossRef]

J. Opt. Soc. Am. B (1)

Opt. Commun. (1)

M. R. C. Caputo and M. E. Gouvea, Opt. Commun. 178, 323 (2000).
[CrossRef]

Other (2)

A. M. Vengsarkar, in Optical Fiber Communication/International Conference on Integrated Optics and Optical Fiber Communication, Vol. 3 of 1987 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1987), p. 233.

G. Keiser, Optical Fiber Communications, 2nd ed., (McGraw-Hill, New York, 1991), p. 118.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Schematic diagram of a dual-loop-configuration tunable OEO. MZ, Mach–Zehnder.

Fig. 2
Fig. 2

RF tunability versus laser wavelength. Dotted and solid curves, experimental data and theoretical calculations, respectively. Curves 1, 2, and 3, center frequencies f0 of 550 MHz, 3 GHz, and 9 GHz, respectively.

Fig. 3
Fig. 3

Oscillator output power versus wavelength of the tunable laser. Dotted curves, experimental data. Curves 1, 2, and 3, central RFs of 550 MHz, 3 GHz, and 9 GHz, respectively.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

fosc=k/τ1=m/τ2=kΔν1=mΔν2.
Δffosc=-l1D1Δλτ1=-l2D2Δλτ2,
l1D1τ1=l2D2τ2.
Dλ=λS041-λ0λ4,

Metrics