Abstract

A diode-pumped, far-off-resonance cw Raman laser in H2 with rotational Stokes emission is reported for the first time to our knowledge. The Raman laser can produce single-wavelength emission at either 830 nm (rotational Stokes) or 1180 nm (vibrational Stokes) depending on the frequency tuning of the pump laser. The mirrors for the rotational cw Raman laser are easier to produce; the laser also exhibits a wider continuous tuning range and is less sensitive to thermal effects than the previously studied vibrational Raman laser [Opt. Lett. 26, 426 (2001) and references therein].

© 2002 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. K. Brasseur, K. S. Repasky, and J. L. Carlsten, Opt. Lett. 23, 367 (1998).
    [CrossRef]
  2. L. S. Meng, K. S. Repasky, P. A. Roos, and J. L. Carlsten, Opt. Lett. 25, 472 (2000).
    [CrossRef]
  3. J. K. Brasseur, P. A. Roos, L. S. Meng, and J. L. Carlsten, J. Opt. Soc. Am. B 17, 1229 (2000).
    [CrossRef]
  4. J. K. Brasseur, P. A. Roos, K. S. Repasky, and J. L. Carlsten, J. Opt. Soc. Am. B 16, 1305 (1999).
    [CrossRef]
  5. For a definition of the notation Q01(1) and S00(1), see Table 1 in R. W. Minck, E. E. Hagenlocker, and W. G. Rado, Ford Motor Company Tech. Rep. SL66–24 (Ford Motor Company, Detroit, Mich., March, 1966).
  6. Stimulated pure rotational Raman scattering with high-power pulsed lasers was first observed in gaseous deuterium by R. W. Minck, E. E. Hagenlocker, and W. G. Rado, Phys. Rev. Lett. 17, 229 (1966).
    [CrossRef]
  7. R. W. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, Appl. Phys. B 31, 97 (1983).
    [CrossRef]
  8. G. V. Venkin, Yu. A. Il’inskii, and G. M. Mikheev, Sov. J. Quantum Electron. 15, 395 (1985).
    [CrossRef]
  9. W. K. Bischel and M. J. Dyer, J. Opt. Soc. Am. B 3, 677 (1986).
    [CrossRef]
  10. W. K. Bischel and M. J. Dyer, Phys. Rev. A 33, 3113 (1986).
    [CrossRef] [PubMed]
  11. Although no direct measurement was performed on this gain coefficient, we calculated a0r by use of formulas and data from J. L. Carlsten and R. G. Wenzel, IEEE J. Quantum Electron. 19, 1407 (1983).
    [CrossRef]
  12. See also R. W. Carlson and W. R. Fenner, Astrophys. J. 178, 551 (1972).
    [CrossRef]
  13. See also M. R. Perrone, V. Piccinno, G. De Nunzio, and V. Nassisi, IEEE J. Quantum Electron. 33, 938 (1997).
    [CrossRef]
  14. G. C. Herring, M. J. Dyer, and W. K. Bischel, Phys. Rev. A 34, 1944 (1986).
    [CrossRef] [PubMed]
  15. J.-W. Hahn, Y.-S. Yoo, J.-Y. Lee, J.-W. Kim, and H.-W. Lee, Appl. Opt. 38, 1859 (1999).
    [CrossRef]
  16. L. S. Meng, P. A. Roos, K. S. Repasky, and J. L. Carlsten, Opt. Lett. 26, 426 (2001).
    [CrossRef]
  17. J. Bienfang, W. Rudolph, P. A. Roos, L. S. Meng, and J. L. Carlsten, J. Opt. Soc. Am. B 19, 1318 (2002).
    [CrossRef]

2002

2001

2000

1999

1998

1997

See also M. R. Perrone, V. Piccinno, G. De Nunzio, and V. Nassisi, IEEE J. Quantum Electron. 33, 938 (1997).
[CrossRef]

1986

G. C. Herring, M. J. Dyer, and W. K. Bischel, Phys. Rev. A 34, 1944 (1986).
[CrossRef] [PubMed]

W. K. Bischel and M. J. Dyer, J. Opt. Soc. Am. B 3, 677 (1986).
[CrossRef]

W. K. Bischel and M. J. Dyer, Phys. Rev. A 33, 3113 (1986).
[CrossRef] [PubMed]

1985

G. V. Venkin, Yu. A. Il’inskii, and G. M. Mikheev, Sov. J. Quantum Electron. 15, 395 (1985).
[CrossRef]

1983

Although no direct measurement was performed on this gain coefficient, we calculated a0r by use of formulas and data from J. L. Carlsten and R. G. Wenzel, IEEE J. Quantum Electron. 19, 1407 (1983).
[CrossRef]

R. W. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, Appl. Phys. B 31, 97 (1983).
[CrossRef]

1972

See also R. W. Carlson and W. R. Fenner, Astrophys. J. 178, 551 (1972).
[CrossRef]

1966

Stimulated pure rotational Raman scattering with high-power pulsed lasers was first observed in gaseous deuterium by R. W. Minck, E. E. Hagenlocker, and W. G. Rado, Phys. Rev. Lett. 17, 229 (1966).
[CrossRef]

Bienfang, J.

Bischel, W. K.

W. K. Bischel and M. J. Dyer, Phys. Rev. A 33, 3113 (1986).
[CrossRef] [PubMed]

G. C. Herring, M. J. Dyer, and W. K. Bischel, Phys. Rev. A 34, 1944 (1986).
[CrossRef] [PubMed]

W. K. Bischel and M. J. Dyer, J. Opt. Soc. Am. B 3, 677 (1986).
[CrossRef]

Brasseur, J. K.

Carlson, R. W.

See also R. W. Carlson and W. R. Fenner, Astrophys. J. 178, 551 (1972).
[CrossRef]

Carlsten, J. L.

De Nunzio, G.

See also M. R. Perrone, V. Piccinno, G. De Nunzio, and V. Nassisi, IEEE J. Quantum Electron. 33, 938 (1997).
[CrossRef]

Drever, R. W.

R. W. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, Appl. Phys. B 31, 97 (1983).
[CrossRef]

Dyer, M. J.

W. K. Bischel and M. J. Dyer, J. Opt. Soc. Am. B 3, 677 (1986).
[CrossRef]

G. C. Herring, M. J. Dyer, and W. K. Bischel, Phys. Rev. A 34, 1944 (1986).
[CrossRef] [PubMed]

W. K. Bischel and M. J. Dyer, Phys. Rev. A 33, 3113 (1986).
[CrossRef] [PubMed]

Fenner, W. R.

See also R. W. Carlson and W. R. Fenner, Astrophys. J. 178, 551 (1972).
[CrossRef]

Ford, G. M.

R. W. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, Appl. Phys. B 31, 97 (1983).
[CrossRef]

Hagenlocker, E. E.

Stimulated pure rotational Raman scattering with high-power pulsed lasers was first observed in gaseous deuterium by R. W. Minck, E. E. Hagenlocker, and W. G. Rado, Phys. Rev. Lett. 17, 229 (1966).
[CrossRef]

For a definition of the notation Q01(1) and S00(1), see Table 1 in R. W. Minck, E. E. Hagenlocker, and W. G. Rado, Ford Motor Company Tech. Rep. SL66–24 (Ford Motor Company, Detroit, Mich., March, 1966).

Hahn, J.-W.

Hall, J. L.

R. W. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, Appl. Phys. B 31, 97 (1983).
[CrossRef]

Herring, G. C.

G. C. Herring, M. J. Dyer, and W. K. Bischel, Phys. Rev. A 34, 1944 (1986).
[CrossRef] [PubMed]

Hough, J.

R. W. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, Appl. Phys. B 31, 97 (1983).
[CrossRef]

Il'inskii, Yu. A.

G. V. Venkin, Yu. A. Il’inskii, and G. M. Mikheev, Sov. J. Quantum Electron. 15, 395 (1985).
[CrossRef]

Kim, J.-W.

Kowalski, F. V.

R. W. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, Appl. Phys. B 31, 97 (1983).
[CrossRef]

Lee, H.-W.

Lee, J.-Y.

Meng, L. S.

Mikheev, G. M.

G. V. Venkin, Yu. A. Il’inskii, and G. M. Mikheev, Sov. J. Quantum Electron. 15, 395 (1985).
[CrossRef]

Minck, R. W.

Stimulated pure rotational Raman scattering with high-power pulsed lasers was first observed in gaseous deuterium by R. W. Minck, E. E. Hagenlocker, and W. G. Rado, Phys. Rev. Lett. 17, 229 (1966).
[CrossRef]

For a definition of the notation Q01(1) and S00(1), see Table 1 in R. W. Minck, E. E. Hagenlocker, and W. G. Rado, Ford Motor Company Tech. Rep. SL66–24 (Ford Motor Company, Detroit, Mich., March, 1966).

Munley, A. J.

R. W. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, Appl. Phys. B 31, 97 (1983).
[CrossRef]

Nassisi, V.

See also M. R. Perrone, V. Piccinno, G. De Nunzio, and V. Nassisi, IEEE J. Quantum Electron. 33, 938 (1997).
[CrossRef]

Perrone, M. R.

See also M. R. Perrone, V. Piccinno, G. De Nunzio, and V. Nassisi, IEEE J. Quantum Electron. 33, 938 (1997).
[CrossRef]

Piccinno, V.

See also M. R. Perrone, V. Piccinno, G. De Nunzio, and V. Nassisi, IEEE J. Quantum Electron. 33, 938 (1997).
[CrossRef]

Rado, W. G.

Stimulated pure rotational Raman scattering with high-power pulsed lasers was first observed in gaseous deuterium by R. W. Minck, E. E. Hagenlocker, and W. G. Rado, Phys. Rev. Lett. 17, 229 (1966).
[CrossRef]

For a definition of the notation Q01(1) and S00(1), see Table 1 in R. W. Minck, E. E. Hagenlocker, and W. G. Rado, Ford Motor Company Tech. Rep. SL66–24 (Ford Motor Company, Detroit, Mich., March, 1966).

Repasky, K. S.

Roos, P. A.

Rudolph, W.

Venkin, G. V.

G. V. Venkin, Yu. A. Il’inskii, and G. M. Mikheev, Sov. J. Quantum Electron. 15, 395 (1985).
[CrossRef]

Ward, H.

R. W. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, Appl. Phys. B 31, 97 (1983).
[CrossRef]

Wenzel, R. G.

Although no direct measurement was performed on this gain coefficient, we calculated a0r by use of formulas and data from J. L. Carlsten and R. G. Wenzel, IEEE J. Quantum Electron. 19, 1407 (1983).
[CrossRef]

Yoo, Y.-S.

Appl. Opt.

Appl. Phys. B

R. W. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, Appl. Phys. B 31, 97 (1983).
[CrossRef]

Astrophys. J.

See also R. W. Carlson and W. R. Fenner, Astrophys. J. 178, 551 (1972).
[CrossRef]

Ford Motor Company Tech. Rep. SL66-24

For a definition of the notation Q01(1) and S00(1), see Table 1 in R. W. Minck, E. E. Hagenlocker, and W. G. Rado, Ford Motor Company Tech. Rep. SL66–24 (Ford Motor Company, Detroit, Mich., March, 1966).

IEEE J. Quantum Electron.

See also M. R. Perrone, V. Piccinno, G. De Nunzio, and V. Nassisi, IEEE J. Quantum Electron. 33, 938 (1997).
[CrossRef]

Although no direct measurement was performed on this gain coefficient, we calculated a0r by use of formulas and data from J. L. Carlsten and R. G. Wenzel, IEEE J. Quantum Electron. 19, 1407 (1983).
[CrossRef]

J. Opt. Soc. Am. B

Opt. Lett.

Phys. Rev. A

W. K. Bischel and M. J. Dyer, Phys. Rev. A 33, 3113 (1986).
[CrossRef] [PubMed]

G. C. Herring, M. J. Dyer, and W. K. Bischel, Phys. Rev. A 34, 1944 (1986).
[CrossRef] [PubMed]

Phys. Rev. Lett.

Stimulated pure rotational Raman scattering with high-power pulsed lasers was first observed in gaseous deuterium by R. W. Minck, E. E. Hagenlocker, and W. G. Rado, Phys. Rev. Lett. 17, 229 (1966).
[CrossRef]

Sov. J. Quantum Electron.

G. V. Venkin, Yu. A. Il’inskii, and G. M. Mikheev, Sov. J. Quantum Electron. 15, 395 (1985).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Experimental setup used to study the rotational cw Raman laser. ECDL, external-cavity diode laser; λ/2, half-wave plate; λ/4, quarter-wave plate; PBS; polarization beam splitter; EOM, electro-optic modulator; SM-PM fiber, single-mode polarization-maintaining fiber; MML, mode-matching lens; HFC, high-finesse cavity; PZT, piezoelectric transducer. The standard Pound–Drever–Hall technique is used to lock the laser’s frequency to a resonance of the HFC.

Fig. 2
Fig. 2

Continuous tuning curve measured for the cw Raman laser. The pump frequency tuning is shown relative to 37 8440.00 GHz, as measured by a Burleigh wavemeter with 10-MHz resolution. Note that at point A, there is some coexistence of the rotational (Rot.) and vibrational (Vib.) Stokes. At point B, we measure the power dependence, as shown in Fig. 3, below.

Fig. 3
Fig. 3

Plot of the rotational Stokes power and transmitted pump power as a function of the incident pump power. The growth of the Stokes power and clamping of the pump power that can be seen are similar to what was observed for the vibrational cw Raman laser.2

Fig. 4
Fig. 4

(a) Theoretical plot of the Raman plane-wave gain coefficients of the rotational and vibrational transitions as functions of pump frequency tuning. The plot shows higher peak gain for the vibrational transition but wider tuning linewidth for the rotational transition in our double-resonance cavity. The cavity resonances of both Stokes are assumed to be at the gain line center when the relative pump frequency is zero [i.e., Δ0=0]. (b) Based on these gain profiles, the power of the transmitted pump, the rotational Stokes, and the vibrational Stokes are calculated as functions of pump tuning. The parameters used for the calculation are mirror reflectance, 0.9999; mirror absorptions, 40 parts in 106 at all wavelengths and both mirrors; and input pump power, 5 mW. The range shown is in qualitative agreement with the measured data presented in Fig. 2.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

Δδνp=Δ0+λpλs-1δνp,
αδνp=α0Γ/22Δδνp2+Γ/22,

Metrics