Abstract

We use a Gaussian laser beam to study the levitation of absorbing Mie particles. Several metal oxide particles are stably levitated, and their movement over time is recorded. Our studies show that the position of each particle is highly dependent on the other particles’ locations. The observations are explained by the phenomenon of thermal creep. The increased local pressure that is due to a temperature gradient along the particle’s surface induces levitation. The particles rest close to minima in the intensity distribution near the optical axis. An experiment is suggested that can be used to locate these minima in a laser beam.

© 2002 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Ashkin, Phys. Rev. Lett. 24, 156 (1970).
    [CrossRef]
  2. A. Ashkin, Proc. Natl. Acad. Sci. (USA) 94, 4853 (1997).
    [CrossRef]
  3. A. Ashkin, J. M. Dziedzic, J. E. Bjorkholm, and S. Chu, Opt. Lett. 11, 288 (1986).
    [CrossRef]
  4. A. Ashkin and J. M. Dziedzic, Phys. Rev. Lett. 38, 1351 (1977).
    [CrossRef]
  5. K. Sasaki, M. Koshioka, H. Misawa, N. Kitamura, and H. Masuhara, Appl. Phys. Lett. 60, 807 (1992).
    [CrossRef]
  6. S. Sato, Y. Harada, and Y. Waseda, Opt. Lett. 19, 1807 (1994).
    [CrossRef]
  7. H. He, M. E. J. Friese, N. R. Heckenberg, and H. Rubinsztein-Dunlop, Phys. Rev. Lett. 75, 826 (1995).
    [CrossRef] [PubMed]
  8. A. Ashkin and J. M. Dziedzic, Appl. Phys. Lett. 19, 283 (1971).
    [CrossRef]
  9. R. C. Gauthier and A. Frangioudakis, Appl. Opt. 39, 26 (2000).
    [CrossRef]
  10. T. C. Bakker Schut, G. Hesselink, B. G. de Grooth, and J. Greve, Cytometry 12, 479 (1991).
    [CrossRef]
  11. J. C. Maxwell, Philos. Trans. R. Soc. London 170, 231 (1879).
    [CrossRef]
  12. M. Lewittes, S. Arnold, and G. Oster, Appl. Phys. Lett. 40, 455 (1982).
    [CrossRef]
  13. A. B. Pluchino, Appl. Opt. 22, 1861 (1983).
    [CrossRef]
  14. A. Rohrbach and E. H. K. Stelzer, J. Opt. Soc. Am. A 18, 839 (2001).
    [CrossRef]
  15. A. Rubinowicz, Ann. Phys. (Leipzig) 62, 691 (1920).
    [CrossRef]
  16. I. Colbeck and E. J. Hardman, Powder Technol. 65, 447 (1991).
    [CrossRef]

2001 (1)

2000 (1)

1997 (1)

A. Ashkin, Proc. Natl. Acad. Sci. (USA) 94, 4853 (1997).
[CrossRef]

1995 (1)

H. He, M. E. J. Friese, N. R. Heckenberg, and H. Rubinsztein-Dunlop, Phys. Rev. Lett. 75, 826 (1995).
[CrossRef] [PubMed]

1994 (1)

1992 (1)

K. Sasaki, M. Koshioka, H. Misawa, N. Kitamura, and H. Masuhara, Appl. Phys. Lett. 60, 807 (1992).
[CrossRef]

1991 (2)

T. C. Bakker Schut, G. Hesselink, B. G. de Grooth, and J. Greve, Cytometry 12, 479 (1991).
[CrossRef]

I. Colbeck and E. J. Hardman, Powder Technol. 65, 447 (1991).
[CrossRef]

1986 (1)

1983 (1)

1982 (1)

M. Lewittes, S. Arnold, and G. Oster, Appl. Phys. Lett. 40, 455 (1982).
[CrossRef]

1977 (1)

A. Ashkin and J. M. Dziedzic, Phys. Rev. Lett. 38, 1351 (1977).
[CrossRef]

1971 (1)

A. Ashkin and J. M. Dziedzic, Appl. Phys. Lett. 19, 283 (1971).
[CrossRef]

1970 (1)

A. Ashkin, Phys. Rev. Lett. 24, 156 (1970).
[CrossRef]

1920 (1)

A. Rubinowicz, Ann. Phys. (Leipzig) 62, 691 (1920).
[CrossRef]

1879 (1)

J. C. Maxwell, Philos. Trans. R. Soc. London 170, 231 (1879).
[CrossRef]

Arnold, S.

M. Lewittes, S. Arnold, and G. Oster, Appl. Phys. Lett. 40, 455 (1982).
[CrossRef]

Ashkin, A.

A. Ashkin, Proc. Natl. Acad. Sci. (USA) 94, 4853 (1997).
[CrossRef]

A. Ashkin, J. M. Dziedzic, J. E. Bjorkholm, and S. Chu, Opt. Lett. 11, 288 (1986).
[CrossRef]

A. Ashkin and J. M. Dziedzic, Phys. Rev. Lett. 38, 1351 (1977).
[CrossRef]

A. Ashkin and J. M. Dziedzic, Appl. Phys. Lett. 19, 283 (1971).
[CrossRef]

A. Ashkin, Phys. Rev. Lett. 24, 156 (1970).
[CrossRef]

Bakker Schut, T. C.

T. C. Bakker Schut, G. Hesselink, B. G. de Grooth, and J. Greve, Cytometry 12, 479 (1991).
[CrossRef]

Bjorkholm, J. E.

Chu, S.

Colbeck, I.

I. Colbeck and E. J. Hardman, Powder Technol. 65, 447 (1991).
[CrossRef]

de Grooth, B. G.

T. C. Bakker Schut, G. Hesselink, B. G. de Grooth, and J. Greve, Cytometry 12, 479 (1991).
[CrossRef]

Dziedzic, J. M.

A. Ashkin, J. M. Dziedzic, J. E. Bjorkholm, and S. Chu, Opt. Lett. 11, 288 (1986).
[CrossRef]

A. Ashkin and J. M. Dziedzic, Phys. Rev. Lett. 38, 1351 (1977).
[CrossRef]

A. Ashkin and J. M. Dziedzic, Appl. Phys. Lett. 19, 283 (1971).
[CrossRef]

Frangioudakis, A.

Friese, M. E. J.

H. He, M. E. J. Friese, N. R. Heckenberg, and H. Rubinsztein-Dunlop, Phys. Rev. Lett. 75, 826 (1995).
[CrossRef] [PubMed]

Gauthier, R. C.

Greve, J.

T. C. Bakker Schut, G. Hesselink, B. G. de Grooth, and J. Greve, Cytometry 12, 479 (1991).
[CrossRef]

Harada, Y.

Hardman, E. J.

I. Colbeck and E. J. Hardman, Powder Technol. 65, 447 (1991).
[CrossRef]

He, H.

H. He, M. E. J. Friese, N. R. Heckenberg, and H. Rubinsztein-Dunlop, Phys. Rev. Lett. 75, 826 (1995).
[CrossRef] [PubMed]

Heckenberg, N. R.

H. He, M. E. J. Friese, N. R. Heckenberg, and H. Rubinsztein-Dunlop, Phys. Rev. Lett. 75, 826 (1995).
[CrossRef] [PubMed]

Hesselink, G.

T. C. Bakker Schut, G. Hesselink, B. G. de Grooth, and J. Greve, Cytometry 12, 479 (1991).
[CrossRef]

Kitamura, N.

K. Sasaki, M. Koshioka, H. Misawa, N. Kitamura, and H. Masuhara, Appl. Phys. Lett. 60, 807 (1992).
[CrossRef]

Koshioka, M.

K. Sasaki, M. Koshioka, H. Misawa, N. Kitamura, and H. Masuhara, Appl. Phys. Lett. 60, 807 (1992).
[CrossRef]

Lewittes, M.

M. Lewittes, S. Arnold, and G. Oster, Appl. Phys. Lett. 40, 455 (1982).
[CrossRef]

Masuhara, H.

K. Sasaki, M. Koshioka, H. Misawa, N. Kitamura, and H. Masuhara, Appl. Phys. Lett. 60, 807 (1992).
[CrossRef]

Maxwell, J. C.

J. C. Maxwell, Philos. Trans. R. Soc. London 170, 231 (1879).
[CrossRef]

Misawa, H.

K. Sasaki, M. Koshioka, H. Misawa, N. Kitamura, and H. Masuhara, Appl. Phys. Lett. 60, 807 (1992).
[CrossRef]

Oster, G.

M. Lewittes, S. Arnold, and G. Oster, Appl. Phys. Lett. 40, 455 (1982).
[CrossRef]

Pluchino, A. B.

Rohrbach, A.

Rubinowicz, A.

A. Rubinowicz, Ann. Phys. (Leipzig) 62, 691 (1920).
[CrossRef]

Rubinsztein-Dunlop, H.

H. He, M. E. J. Friese, N. R. Heckenberg, and H. Rubinsztein-Dunlop, Phys. Rev. Lett. 75, 826 (1995).
[CrossRef] [PubMed]

Sasaki, K.

K. Sasaki, M. Koshioka, H. Misawa, N. Kitamura, and H. Masuhara, Appl. Phys. Lett. 60, 807 (1992).
[CrossRef]

Sato, S.

Stelzer, E. H. K.

Waseda, Y.

Ann. Phys. (Leipzig) (1)

A. Rubinowicz, Ann. Phys. (Leipzig) 62, 691 (1920).
[CrossRef]

Appl. Opt. (2)

Appl. Phys. Lett. (3)

K. Sasaki, M. Koshioka, H. Misawa, N. Kitamura, and H. Masuhara, Appl. Phys. Lett. 60, 807 (1992).
[CrossRef]

A. Ashkin and J. M. Dziedzic, Appl. Phys. Lett. 19, 283 (1971).
[CrossRef]

M. Lewittes, S. Arnold, and G. Oster, Appl. Phys. Lett. 40, 455 (1982).
[CrossRef]

Cytometry (1)

T. C. Bakker Schut, G. Hesselink, B. G. de Grooth, and J. Greve, Cytometry 12, 479 (1991).
[CrossRef]

J. Opt. Soc. Am. A (1)

Opt. Lett. (2)

Philos. Trans. R. Soc. London (1)

J. C. Maxwell, Philos. Trans. R. Soc. London 170, 231 (1879).
[CrossRef]

Phys. Rev. Lett. (3)

H. He, M. E. J. Friese, N. R. Heckenberg, and H. Rubinsztein-Dunlop, Phys. Rev. Lett. 75, 826 (1995).
[CrossRef] [PubMed]

A. Ashkin and J. M. Dziedzic, Phys. Rev. Lett. 38, 1351 (1977).
[CrossRef]

A. Ashkin, Phys. Rev. Lett. 24, 156 (1970).
[CrossRef]

Powder Technol. (1)

I. Colbeck and E. J. Hardman, Powder Technol. 65, 447 (1991).
[CrossRef]

Proc. Natl. Acad. Sci. (USA) (1)

A. Ashkin, Proc. Natl. Acad. Sci. (USA) 94, 4853 (1997).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Levitation apparatus. The beam of an Ar+ laser is expanded and directed upward. A lens focuses the beam into a sealed glass chamber, in which convection is minimal. Particles can be dropped into the chamber through a small hole at the top. A stereomicroscope is used to image the levitated samples in a plane parallel to the optical axis.

Fig. 2
Fig. 2

Left, typical image of levitated particles in the laser beam. The beam is directed upward, and the particles sit in the beam. Right, the beam profile. The solid lines represent the position where the normalized intensity of an undisturbed beam drops off to 1/e2 of its on-axis value. The open circles mark the locations of the particles.

Fig. 3
Fig. 3

Trajectories of five particles (1–5) in the trap when two additional particles (6 and 7) are dropped from above.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

Fz=-SP cos θ dA.

Metrics