Abstract

The use of photoelastic tomography to obtain the two-dimensional axial stress profile of a polarization-maintaining (PM) fiber with high resolution and accuracy is described. We illustrate, for what is believed to be the first time, the two-dimensional distribution of the local principal axes of the fiber’s cross section, which is directly related to the fiber’s PM ability. We demonstrate that the stress-induced anisotropy as well as all the stress tensor components of the fiber can be fully determined.

© 2002 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. A. Bergh, H. C. Lefevre, and H. J. Shaw, J. Lightwave Technol. 5, 91 (1984).
    [CrossRef]
  2. D. A. V. Kliner, J. P. Koplow, L. Goldberg, A. L. G. Carter, and J. A. Digweed, Opt. Lett. 26, 184 (2001).
    [CrossRef]
  3. R. Khosravani, I. T. Lima, P. Ebrahimi, E. Ibragimov, A. E. Wilner, and C. R. Menyuk, IEEE Photon. Technol. Lett. 13, 127 (2001).
    [CrossRef]
  4. L. Poti and A. Bogoni, IEEE Photon. Technol. Lett. 13, 1367 (2001).
    [CrossRef]
  5. P. Hernday, Fiber Optic Test and Measurement, D. Derickson, ed. (Prentice-Hall, Englewood Cliffs, N.J., 1998).
  6. K. Okamoto, Fundamentals of Optical Waveguides (Academic, New York, 2000), Chap. 3
  7. N. Shibata, M. Kawachi, and S. Seikai, Appl. Opt. 25, 1104 (1986).
  8. G. D. VanWiggeren, T. K. Gaylord, D. D. Davis, E. Anemogiannis, B. D. Garrett, M. I. Braiwish, and E. N. Glytsis, Electron. Lett. 36, 1355 (2000).
    [CrossRef]
  9. Y. Park, T.-J. Ahn, Y. H. Kim, W.-T. Han, U. C. Paek, and D. Y. Kim, Appl. Opt. 41, 26 (2002).
  10. A. C. Kak and M. Slaney, Principles of Computerized Tomographic Imaging (Society for Industrial and Applied Mathematics, Philadelphia, Pa., 2001), Chap. 3
    [CrossRef]
  11. T. Abe, Y. Mitsunaga, and H. Koga, J. Opt. Soc. Am. A 3, 138 (1986).
    [CrossRef]
  12. A. Puro and K. E. Kell, J. Lightwave Technol. 10, 1014 (1992).
    [CrossRef]
  13. R. C. O’Rourke, J. Appl. Phys. 22, 878 (1951).
    [CrossRef]

2002

Y. Park, T.-J. Ahn, Y. H. Kim, W.-T. Han, U. C. Paek, and D. Y. Kim, Appl. Opt. 41, 26 (2002).

2001

R. Khosravani, I. T. Lima, P. Ebrahimi, E. Ibragimov, A. E. Wilner, and C. R. Menyuk, IEEE Photon. Technol. Lett. 13, 127 (2001).
[CrossRef]

L. Poti and A. Bogoni, IEEE Photon. Technol. Lett. 13, 1367 (2001).
[CrossRef]

D. A. V. Kliner, J. P. Koplow, L. Goldberg, A. L. G. Carter, and J. A. Digweed, Opt. Lett. 26, 184 (2001).
[CrossRef]

2000

G. D. VanWiggeren, T. K. Gaylord, D. D. Davis, E. Anemogiannis, B. D. Garrett, M. I. Braiwish, and E. N. Glytsis, Electron. Lett. 36, 1355 (2000).
[CrossRef]

1992

A. Puro and K. E. Kell, J. Lightwave Technol. 10, 1014 (1992).
[CrossRef]

1986

N. Shibata, M. Kawachi, and S. Seikai, Appl. Opt. 25, 1104 (1986).

T. Abe, Y. Mitsunaga, and H. Koga, J. Opt. Soc. Am. A 3, 138 (1986).
[CrossRef]

1984

R. A. Bergh, H. C. Lefevre, and H. J. Shaw, J. Lightwave Technol. 5, 91 (1984).
[CrossRef]

1951

R. C. O’Rourke, J. Appl. Phys. 22, 878 (1951).
[CrossRef]

Abe, T.

T. Abe, Y. Mitsunaga, and H. Koga, J. Opt. Soc. Am. A 3, 138 (1986).
[CrossRef]

Ahn, T.-J.

Y. Park, T.-J. Ahn, Y. H. Kim, W.-T. Han, U. C. Paek, and D. Y. Kim, Appl. Opt. 41, 26 (2002).

Anemogiannis, E.

G. D. VanWiggeren, T. K. Gaylord, D. D. Davis, E. Anemogiannis, B. D. Garrett, M. I. Braiwish, and E. N. Glytsis, Electron. Lett. 36, 1355 (2000).
[CrossRef]

Bergh, R. A.

R. A. Bergh, H. C. Lefevre, and H. J. Shaw, J. Lightwave Technol. 5, 91 (1984).
[CrossRef]

Bogoni, A.

L. Poti and A. Bogoni, IEEE Photon. Technol. Lett. 13, 1367 (2001).
[CrossRef]

Braiwish, M. I.

G. D. VanWiggeren, T. K. Gaylord, D. D. Davis, E. Anemogiannis, B. D. Garrett, M. I. Braiwish, and E. N. Glytsis, Electron. Lett. 36, 1355 (2000).
[CrossRef]

Carter, A. L. G.

Davis, D. D.

G. D. VanWiggeren, T. K. Gaylord, D. D. Davis, E. Anemogiannis, B. D. Garrett, M. I. Braiwish, and E. N. Glytsis, Electron. Lett. 36, 1355 (2000).
[CrossRef]

Digweed, J. A.

Ebrahimi, P.

R. Khosravani, I. T. Lima, P. Ebrahimi, E. Ibragimov, A. E. Wilner, and C. R. Menyuk, IEEE Photon. Technol. Lett. 13, 127 (2001).
[CrossRef]

Garrett, B. D.

G. D. VanWiggeren, T. K. Gaylord, D. D. Davis, E. Anemogiannis, B. D. Garrett, M. I. Braiwish, and E. N. Glytsis, Electron. Lett. 36, 1355 (2000).
[CrossRef]

Gaylord, T. K.

G. D. VanWiggeren, T. K. Gaylord, D. D. Davis, E. Anemogiannis, B. D. Garrett, M. I. Braiwish, and E. N. Glytsis, Electron. Lett. 36, 1355 (2000).
[CrossRef]

Glytsis, E. N.

G. D. VanWiggeren, T. K. Gaylord, D. D. Davis, E. Anemogiannis, B. D. Garrett, M. I. Braiwish, and E. N. Glytsis, Electron. Lett. 36, 1355 (2000).
[CrossRef]

Goldberg, L.

Han, W.-T.

Y. Park, T.-J. Ahn, Y. H. Kim, W.-T. Han, U. C. Paek, and D. Y. Kim, Appl. Opt. 41, 26 (2002).

Hernday, P.

P. Hernday, Fiber Optic Test and Measurement, D. Derickson, ed. (Prentice-Hall, Englewood Cliffs, N.J., 1998).

Ibragimov, E.

R. Khosravani, I. T. Lima, P. Ebrahimi, E. Ibragimov, A. E. Wilner, and C. R. Menyuk, IEEE Photon. Technol. Lett. 13, 127 (2001).
[CrossRef]

Kak, A. C.

A. C. Kak and M. Slaney, Principles of Computerized Tomographic Imaging (Society for Industrial and Applied Mathematics, Philadelphia, Pa., 2001), Chap. 3
[CrossRef]

Kawachi, M.

N. Shibata, M. Kawachi, and S. Seikai, Appl. Opt. 25, 1104 (1986).

Kell, K. E.

A. Puro and K. E. Kell, J. Lightwave Technol. 10, 1014 (1992).
[CrossRef]

Khosravani, R.

R. Khosravani, I. T. Lima, P. Ebrahimi, E. Ibragimov, A. E. Wilner, and C. R. Menyuk, IEEE Photon. Technol. Lett. 13, 127 (2001).
[CrossRef]

Kim, D. Y.

Y. Park, T.-J. Ahn, Y. H. Kim, W.-T. Han, U. C. Paek, and D. Y. Kim, Appl. Opt. 41, 26 (2002).

Kim, Y. H.

Y. Park, T.-J. Ahn, Y. H. Kim, W.-T. Han, U. C. Paek, and D. Y. Kim, Appl. Opt. 41, 26 (2002).

Kliner, D. A. V.

Koga, H.

T. Abe, Y. Mitsunaga, and H. Koga, J. Opt. Soc. Am. A 3, 138 (1986).
[CrossRef]

Koplow, J. P.

Lefevre, H. C.

R. A. Bergh, H. C. Lefevre, and H. J. Shaw, J. Lightwave Technol. 5, 91 (1984).
[CrossRef]

Lima, I. T.

R. Khosravani, I. T. Lima, P. Ebrahimi, E. Ibragimov, A. E. Wilner, and C. R. Menyuk, IEEE Photon. Technol. Lett. 13, 127 (2001).
[CrossRef]

Menyuk, C. R.

R. Khosravani, I. T. Lima, P. Ebrahimi, E. Ibragimov, A. E. Wilner, and C. R. Menyuk, IEEE Photon. Technol. Lett. 13, 127 (2001).
[CrossRef]

Mitsunaga, Y.

T. Abe, Y. Mitsunaga, and H. Koga, J. Opt. Soc. Am. A 3, 138 (1986).
[CrossRef]

Okamoto, K.

K. Okamoto, Fundamentals of Optical Waveguides (Academic, New York, 2000), Chap. 3

O'Rourke, R. C.

R. C. O’Rourke, J. Appl. Phys. 22, 878 (1951).
[CrossRef]

Paek, U. C.

Y. Park, T.-J. Ahn, Y. H. Kim, W.-T. Han, U. C. Paek, and D. Y. Kim, Appl. Opt. 41, 26 (2002).

Park, Y.

Y. Park, T.-J. Ahn, Y. H. Kim, W.-T. Han, U. C. Paek, and D. Y. Kim, Appl. Opt. 41, 26 (2002).

Poti, L.

L. Poti and A. Bogoni, IEEE Photon. Technol. Lett. 13, 1367 (2001).
[CrossRef]

Puro, A.

A. Puro and K. E. Kell, J. Lightwave Technol. 10, 1014 (1992).
[CrossRef]

Seikai, S.

N. Shibata, M. Kawachi, and S. Seikai, Appl. Opt. 25, 1104 (1986).

Shaw, H. J.

R. A. Bergh, H. C. Lefevre, and H. J. Shaw, J. Lightwave Technol. 5, 91 (1984).
[CrossRef]

Shibata, N.

N. Shibata, M. Kawachi, and S. Seikai, Appl. Opt. 25, 1104 (1986).

Slaney, M.

A. C. Kak and M. Slaney, Principles of Computerized Tomographic Imaging (Society for Industrial and Applied Mathematics, Philadelphia, Pa., 2001), Chap. 3
[CrossRef]

VanWiggeren, G. D.

G. D. VanWiggeren, T. K. Gaylord, D. D. Davis, E. Anemogiannis, B. D. Garrett, M. I. Braiwish, and E. N. Glytsis, Electron. Lett. 36, 1355 (2000).
[CrossRef]

Wilner, A. E.

R. Khosravani, I. T. Lima, P. Ebrahimi, E. Ibragimov, A. E. Wilner, and C. R. Menyuk, IEEE Photon. Technol. Lett. 13, 127 (2001).
[CrossRef]

Appl. Opt.

N. Shibata, M. Kawachi, and S. Seikai, Appl. Opt. 25, 1104 (1986).

Y. Park, T.-J. Ahn, Y. H. Kim, W.-T. Han, U. C. Paek, and D. Y. Kim, Appl. Opt. 41, 26 (2002).

Electron. Lett.

G. D. VanWiggeren, T. K. Gaylord, D. D. Davis, E. Anemogiannis, B. D. Garrett, M. I. Braiwish, and E. N. Glytsis, Electron. Lett. 36, 1355 (2000).
[CrossRef]

IEEE Photon. Technol. Lett.

R. Khosravani, I. T. Lima, P. Ebrahimi, E. Ibragimov, A. E. Wilner, and C. R. Menyuk, IEEE Photon. Technol. Lett. 13, 127 (2001).
[CrossRef]

L. Poti and A. Bogoni, IEEE Photon. Technol. Lett. 13, 1367 (2001).
[CrossRef]

J. Appl. Phys.

R. C. O’Rourke, J. Appl. Phys. 22, 878 (1951).
[CrossRef]

J. Lightwave Technol.

R. A. Bergh, H. C. Lefevre, and H. J. Shaw, J. Lightwave Technol. 5, 91 (1984).
[CrossRef]

J. Lightwave Technol.

A. Puro and K. E. Kell, J. Lightwave Technol. 10, 1014 (1992).
[CrossRef]

J. Opt. Soc. Am. A

T. Abe, Y. Mitsunaga, and H. Koga, J. Opt. Soc. Am. A 3, 138 (1986).
[CrossRef]

Opt. Lett.

Other

P. Hernday, Fiber Optic Test and Measurement, D. Derickson, ed. (Prentice-Hall, Englewood Cliffs, N.J., 1998).

K. Okamoto, Fundamentals of Optical Waveguides (Academic, New York, 2000), Chap. 3

A. C. Kak and M. Slaney, Principles of Computerized Tomographic Imaging (Society for Industrial and Applied Mathematics, Philadelphia, Pa., 2001), Chap. 3
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Microscope image of the cross section of a PM fiber.

Fig. 2
Fig. 2

(a) 2-D axial stress profile σzz calculated from the measured data by use of the tomographic method. (b)–(d) Profiles of σrr, σθθ, and σrθ, calculated from σzz.

Fig. 3
Fig. 3

Color contour plot of anisotropy on the cross section of the PM fiber. The solid lines represent the direction of the slow axes at local positions, and the color distribution shows the amount of the anisotropy.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

σzzx,y=λ/2πC iradonδt,α,
2Fr2+1rFr+1r22Fθ2=σzz-χ,
σrr=1rFr+1r22F2θ,σθθ=2Fr2,σrθ=1r2Fθ-1r2Frθ.
σ=σrrσrθ0σrθσθθ000σzz.
ñx-n0=-C1σ̃x-C2σ̃y+σ̃z,ñy-n0=-C1σ̃y-C2σ̃x+σ̃z,

Metrics