Abstract

Multilevel phase-shift Fresnel diffractive zone plates fabricated on silicon wafers have been used as T-ray imaging lenses. The imaging results, including spatial and temporal distribution of T-rays measured at the focal planes in the frequency range from 0.5 to 1.5 THz, indicate that the performance of the diffractive terahertz (THz) lens is comparable with or better than that of conventional refractive THz lenses. The unique properties of the T-ray binary lens make it possible to fabricate excellent optics for narrow-band THz applications.

© 2002 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. Noach, A. Lewis, Y. Arieli, and N. Eisenberg, Appl. Opt. 35, 3635 (1996).
    [CrossRef] [PubMed]
  2. J. W. Goodman, Introduction to Fourier Optics (McGraw-Hill, New York, 1996).
  3. G. B. Jin, Y. B. Yang, and M. X. Wu, Binary Optics, 1st ed. (China Defense Industry, Beijing, 1998).
  4. J. Jahns and S. J. Walker, Appl. Opt. 35, 931 (1990).
    [CrossRef]
  5. B. Ferguson, S. H. Wang, and X.-C. Zhang, in Proceedings of the 2001 IEEE/LEOS Annual Meeting (Institute of Electrical and Electronics Engineers, Picataway, N.J., 2001), postdeadline paper PD1-7.
  6. D. M. Mittleman, S. Hunsche, L. Bovin, and M. C. Nuss, Opt. Lett. 22, 904 (1997).
    [CrossRef] [PubMed]
  7. Z. Jiang, X. G. Xu, and X.-C. Zhang, Appl. Opt. 39, 2982 (2000).
    [CrossRef]
  8. Q. Wu, T. D. Hewitt, and X.-C. Zhang, Appl. Phys. Lett. 69, 1026 (1996).
    [CrossRef]
  9. E. D. Walsby, R. Cheung, R. J. Blaikie, and D. R. S. Cumming, Proc. SPIE 3879, 79 (1999).
    [CrossRef]
  10. M. B. Stern, Microelectron. Eng. 32, 369 (1996).
    [CrossRef]
  11. S. Feng, H. G. Winful, and R. W. Hellwarth, Opt. Lett. 23, 385 (1998).
    [CrossRef]

2000

1999

E. D. Walsby, R. Cheung, R. J. Blaikie, and D. R. S. Cumming, Proc. SPIE 3879, 79 (1999).
[CrossRef]

1998

1997

1996

M. B. Stern, Microelectron. Eng. 32, 369 (1996).
[CrossRef]

Q. Wu, T. D. Hewitt, and X.-C. Zhang, Appl. Phys. Lett. 69, 1026 (1996).
[CrossRef]

S. Noach, A. Lewis, Y. Arieli, and N. Eisenberg, Appl. Opt. 35, 3635 (1996).
[CrossRef] [PubMed]

1990

J. Jahns and S. J. Walker, Appl. Opt. 35, 931 (1990).
[CrossRef]

Arieli, Y.

Blaikie, R. J.

E. D. Walsby, R. Cheung, R. J. Blaikie, and D. R. S. Cumming, Proc. SPIE 3879, 79 (1999).
[CrossRef]

Bovin, L.

Cheung, R.

E. D. Walsby, R. Cheung, R. J. Blaikie, and D. R. S. Cumming, Proc. SPIE 3879, 79 (1999).
[CrossRef]

Cumming, D. R. S.

E. D. Walsby, R. Cheung, R. J. Blaikie, and D. R. S. Cumming, Proc. SPIE 3879, 79 (1999).
[CrossRef]

Eisenberg, N.

Feng, S.

Ferguson, B.

B. Ferguson, S. H. Wang, and X.-C. Zhang, in Proceedings of the 2001 IEEE/LEOS Annual Meeting (Institute of Electrical and Electronics Engineers, Picataway, N.J., 2001), postdeadline paper PD1-7.

Goodman, J. W.

J. W. Goodman, Introduction to Fourier Optics (McGraw-Hill, New York, 1996).

Hellwarth, R. W.

Hewitt, T. D.

Q. Wu, T. D. Hewitt, and X.-C. Zhang, Appl. Phys. Lett. 69, 1026 (1996).
[CrossRef]

Hunsche, S.

Jahns, J.

J. Jahns and S. J. Walker, Appl. Opt. 35, 931 (1990).
[CrossRef]

Jiang, Z.

Jin, G. B.

G. B. Jin, Y. B. Yang, and M. X. Wu, Binary Optics, 1st ed. (China Defense Industry, Beijing, 1998).

Lewis, A.

Mittleman, D. M.

Noach, S.

Nuss, M. C.

Stern, M. B.

M. B. Stern, Microelectron. Eng. 32, 369 (1996).
[CrossRef]

Walker, S. J.

J. Jahns and S. J. Walker, Appl. Opt. 35, 931 (1990).
[CrossRef]

Walsby, E. D.

E. D. Walsby, R. Cheung, R. J. Blaikie, and D. R. S. Cumming, Proc. SPIE 3879, 79 (1999).
[CrossRef]

Wang, S. H.

B. Ferguson, S. H. Wang, and X.-C. Zhang, in Proceedings of the 2001 IEEE/LEOS Annual Meeting (Institute of Electrical and Electronics Engineers, Picataway, N.J., 2001), postdeadline paper PD1-7.

Winful, H. G.

Wu, M. X.

G. B. Jin, Y. B. Yang, and M. X. Wu, Binary Optics, 1st ed. (China Defense Industry, Beijing, 1998).

Wu, Q.

Q. Wu, T. D. Hewitt, and X.-C. Zhang, Appl. Phys. Lett. 69, 1026 (1996).
[CrossRef]

Xu, X. G.

Yang, Y. B.

G. B. Jin, Y. B. Yang, and M. X. Wu, Binary Optics, 1st ed. (China Defense Industry, Beijing, 1998).

Zhang, X.-C.

Z. Jiang, X. G. Xu, and X.-C. Zhang, Appl. Opt. 39, 2982 (2000).
[CrossRef]

Q. Wu, T. D. Hewitt, and X.-C. Zhang, Appl. Phys. Lett. 69, 1026 (1996).
[CrossRef]

B. Ferguson, S. H. Wang, and X.-C. Zhang, in Proceedings of the 2001 IEEE/LEOS Annual Meeting (Institute of Electrical and Electronics Engineers, Picataway, N.J., 2001), postdeadline paper PD1-7.

Appl. Opt.

Appl. Phys. Lett.

Q. Wu, T. D. Hewitt, and X.-C. Zhang, Appl. Phys. Lett. 69, 1026 (1996).
[CrossRef]

Microelectron. Eng.

M. B. Stern, Microelectron. Eng. 32, 369 (1996).
[CrossRef]

Opt. Lett.

Proc. SPIE

E. D. Walsby, R. Cheung, R. J. Blaikie, and D. R. S. Cumming, Proc. SPIE 3879, 79 (1999).
[CrossRef]

Other

B. Ferguson, S. H. Wang, and X.-C. Zhang, in Proceedings of the 2001 IEEE/LEOS Annual Meeting (Institute of Electrical and Electronics Engineers, Picataway, N.J., 2001), postdeadline paper PD1-7.

J. W. Goodman, Introduction to Fourier Optics (McGraw-Hill, New York, 1996).

G. B. Jin, Y. B. Yang, and M. X. Wu, Binary Optics, 1st ed. (China Defense Industry, Beijing, 1998).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Schematic illustration of a circular multiphase-shift binary lens. L is the level number of the lens, and the origin is at the lens center point. The phase shift, Φr2, is a function of r2=x2+y2. The phase shift for each step is 2π/L, which corresponds to an etch depth of λ/LnTHz-1. For an eight-level silicon lens at 1 THz, the etching depth step is 15.5 µm. N is the total number of zones.

Fig. 2
Fig. 2

Schematic of the experimental setup of the THz CCD imaging system. The probe beam reflected from the ZnTe sensor was focused to CCD via a pellicle and a polarizer, P2. The polarization directions of polarizers P1 and P2 are perpendicular to each other.

Fig. 3
Fig. 3

(left) Photographs of T-ray binary lenses and (right) their THz wave intensity distribution on the xy plane at a distance of 25 mm (designed focal plane at 1 THz) between the lenses and the ZnTe sensor. The diameter of each lens is 30 mm.

Fig. 4
Fig. 4

Variation of THz focal length with THz frequency for an eight-level T-ray binary lens. The line is the calculated result, and the filled circles are the measured experimental data.

Fig. 5
Fig. 5

Field distribution of a THz wave on the zy plane at peak amplitude.

Tables (1)

Tables Icon

Table 1 Calculated and Measured Diffraction Efficiency (%) of T-ray Binary Lenses

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

uz=nAns expi2πnrp2+12λzx2+y2dxdy,
zn=-rp22λn,  n=±1,±2,.
η=A-12=sinc21/L.

Metrics