Abstract

We demonstrate a significant improvement in signal-to-noise ratio in coherent anti-Stokes Raman scattering (CARS) spectroscopy/microscopy, using two highly synchronized picosecond Ti:sapphire lasers. A temporal jitter between the pulse trains from the two independent commercial lasers is reduced from a few picoseconds to 21 fs, maintained over several hours. The tight synchronization brings the fluctuation of the CARS signal down to the shot-noise limit, leading to enhanced CARS vibrational images of living cells and polymer beads.

© 2002 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. D. Duncan, J. Reintjes, and T. J. Manuccia, Opt. Lett. 7, 350 (1982).
    [CrossRef] [PubMed]
  2. A. Zumbusch, G. R. Holtom, and X. S. Xie, Phys. Rev. Lett. 82, 4142 (1999).
    [CrossRef]
  3. E. O. Potma, W. P. de Boeij, P. J. M. von Haastert, and D. A. Wiersma, Proc. Natl. Acad. Sci. USA 98, 1577 (2001).
    [CrossRef]
  4. A. Volkmer, J.-X. Cheng, and X. S. Xie, Phys. Rev. Lett. 87, 023901 (2001).
    [CrossRef]
  5. J.-X. Cheng, A. Volkmer, L. D. Book, and X. S. Xie, J. Phys. Chem. B 105, 1277 (2001).
    [CrossRef]
  6. J.-X. Cheng, L. D. Book, and X. S. Xie, Opt. Lett. 26, 1341 (2001).
    [CrossRef]
  7. L.-S. Ma, R. K. Shelton, H. C. Kapteyn, M. M. Murnane, and J. Ye, Phys. Rev. A 64, 021802 (2001).
    [CrossRef]
  8. R. K. Shelton, L.-S. Ma, H. C. Kapteyn, M. M. Murnane, J. L. Hall, and J. Ye, Science 293, 1286 (2001).
    [CrossRef] [PubMed]
  9. R. K. Shelton, S. Foreman, L.-S. Ma, H. C. Kapteyn, M. M. Murnane, J. L. Hall, M. Notcutt, and J. Ye, Opt. Lett. 27, 312 (2002).
    [CrossRef]
  10. MIRA 900-P, Coherent, Inc., Santa Clara, Calif. Mention of the product name is for technical communication only.

2002

2001

J.-X. Cheng, L. D. Book, and X. S. Xie, Opt. Lett. 26, 1341 (2001).
[CrossRef]

E. O. Potma, W. P. de Boeij, P. J. M. von Haastert, and D. A. Wiersma, Proc. Natl. Acad. Sci. USA 98, 1577 (2001).
[CrossRef]

A. Volkmer, J.-X. Cheng, and X. S. Xie, Phys. Rev. Lett. 87, 023901 (2001).
[CrossRef]

J.-X. Cheng, A. Volkmer, L. D. Book, and X. S. Xie, J. Phys. Chem. B 105, 1277 (2001).
[CrossRef]

L.-S. Ma, R. K. Shelton, H. C. Kapteyn, M. M. Murnane, and J. Ye, Phys. Rev. A 64, 021802 (2001).
[CrossRef]

R. K. Shelton, L.-S. Ma, H. C. Kapteyn, M. M. Murnane, J. L. Hall, and J. Ye, Science 293, 1286 (2001).
[CrossRef] [PubMed]

1999

A. Zumbusch, G. R. Holtom, and X. S. Xie, Phys. Rev. Lett. 82, 4142 (1999).
[CrossRef]

1982

Book, L. D.

J.-X. Cheng, A. Volkmer, L. D. Book, and X. S. Xie, J. Phys. Chem. B 105, 1277 (2001).
[CrossRef]

J.-X. Cheng, L. D. Book, and X. S. Xie, Opt. Lett. 26, 1341 (2001).
[CrossRef]

Cheng, J.-X.

J.-X. Cheng, L. D. Book, and X. S. Xie, Opt. Lett. 26, 1341 (2001).
[CrossRef]

A. Volkmer, J.-X. Cheng, and X. S. Xie, Phys. Rev. Lett. 87, 023901 (2001).
[CrossRef]

J.-X. Cheng, A. Volkmer, L. D. Book, and X. S. Xie, J. Phys. Chem. B 105, 1277 (2001).
[CrossRef]

de Boeij, W. P.

E. O. Potma, W. P. de Boeij, P. J. M. von Haastert, and D. A. Wiersma, Proc. Natl. Acad. Sci. USA 98, 1577 (2001).
[CrossRef]

Duncan, M. D.

Foreman, S.

Hall, J. L.

Holtom, G. R.

A. Zumbusch, G. R. Holtom, and X. S. Xie, Phys. Rev. Lett. 82, 4142 (1999).
[CrossRef]

Kapteyn, H. C.

R. K. Shelton, S. Foreman, L.-S. Ma, H. C. Kapteyn, M. M. Murnane, J. L. Hall, M. Notcutt, and J. Ye, Opt. Lett. 27, 312 (2002).
[CrossRef]

R. K. Shelton, L.-S. Ma, H. C. Kapteyn, M. M. Murnane, J. L. Hall, and J. Ye, Science 293, 1286 (2001).
[CrossRef] [PubMed]

L.-S. Ma, R. K. Shelton, H. C. Kapteyn, M. M. Murnane, and J. Ye, Phys. Rev. A 64, 021802 (2001).
[CrossRef]

Ma, L.-S.

R. K. Shelton, S. Foreman, L.-S. Ma, H. C. Kapteyn, M. M. Murnane, J. L. Hall, M. Notcutt, and J. Ye, Opt. Lett. 27, 312 (2002).
[CrossRef]

R. K. Shelton, L.-S. Ma, H. C. Kapteyn, M. M. Murnane, J. L. Hall, and J. Ye, Science 293, 1286 (2001).
[CrossRef] [PubMed]

L.-S. Ma, R. K. Shelton, H. C. Kapteyn, M. M. Murnane, and J. Ye, Phys. Rev. A 64, 021802 (2001).
[CrossRef]

Manuccia, T. J.

Murnane, M. M.

R. K. Shelton, S. Foreman, L.-S. Ma, H. C. Kapteyn, M. M. Murnane, J. L. Hall, M. Notcutt, and J. Ye, Opt. Lett. 27, 312 (2002).
[CrossRef]

R. K. Shelton, L.-S. Ma, H. C. Kapteyn, M. M. Murnane, J. L. Hall, and J. Ye, Science 293, 1286 (2001).
[CrossRef] [PubMed]

L.-S. Ma, R. K. Shelton, H. C. Kapteyn, M. M. Murnane, and J. Ye, Phys. Rev. A 64, 021802 (2001).
[CrossRef]

Notcutt, M.

Potma, E. O.

E. O. Potma, W. P. de Boeij, P. J. M. von Haastert, and D. A. Wiersma, Proc. Natl. Acad. Sci. USA 98, 1577 (2001).
[CrossRef]

Reintjes, J.

Shelton, R. K.

R. K. Shelton, S. Foreman, L.-S. Ma, H. C. Kapteyn, M. M. Murnane, J. L. Hall, M. Notcutt, and J. Ye, Opt. Lett. 27, 312 (2002).
[CrossRef]

R. K. Shelton, L.-S. Ma, H. C. Kapteyn, M. M. Murnane, J. L. Hall, and J. Ye, Science 293, 1286 (2001).
[CrossRef] [PubMed]

L.-S. Ma, R. K. Shelton, H. C. Kapteyn, M. M. Murnane, and J. Ye, Phys. Rev. A 64, 021802 (2001).
[CrossRef]

Volkmer, A.

A. Volkmer, J.-X. Cheng, and X. S. Xie, Phys. Rev. Lett. 87, 023901 (2001).
[CrossRef]

J.-X. Cheng, A. Volkmer, L. D. Book, and X. S. Xie, J. Phys. Chem. B 105, 1277 (2001).
[CrossRef]

von Haastert, P. J. M.

E. O. Potma, W. P. de Boeij, P. J. M. von Haastert, and D. A. Wiersma, Proc. Natl. Acad. Sci. USA 98, 1577 (2001).
[CrossRef]

Wiersma, D. A.

E. O. Potma, W. P. de Boeij, P. J. M. von Haastert, and D. A. Wiersma, Proc. Natl. Acad. Sci. USA 98, 1577 (2001).
[CrossRef]

Xie, X. S.

J.-X. Cheng, A. Volkmer, L. D. Book, and X. S. Xie, J. Phys. Chem. B 105, 1277 (2001).
[CrossRef]

J.-X. Cheng, L. D. Book, and X. S. Xie, Opt. Lett. 26, 1341 (2001).
[CrossRef]

A. Volkmer, J.-X. Cheng, and X. S. Xie, Phys. Rev. Lett. 87, 023901 (2001).
[CrossRef]

A. Zumbusch, G. R. Holtom, and X. S. Xie, Phys. Rev. Lett. 82, 4142 (1999).
[CrossRef]

Ye, J.

R. K. Shelton, S. Foreman, L.-S. Ma, H. C. Kapteyn, M. M. Murnane, J. L. Hall, M. Notcutt, and J. Ye, Opt. Lett. 27, 312 (2002).
[CrossRef]

R. K. Shelton, L.-S. Ma, H. C. Kapteyn, M. M. Murnane, J. L. Hall, and J. Ye, Science 293, 1286 (2001).
[CrossRef] [PubMed]

L.-S. Ma, R. K. Shelton, H. C. Kapteyn, M. M. Murnane, and J. Ye, Phys. Rev. A 64, 021802 (2001).
[CrossRef]

Zumbusch, A.

A. Zumbusch, G. R. Holtom, and X. S. Xie, Phys. Rev. Lett. 82, 4142 (1999).
[CrossRef]

J. Phys. Chem. B

J.-X. Cheng, A. Volkmer, L. D. Book, and X. S. Xie, J. Phys. Chem. B 105, 1277 (2001).
[CrossRef]

Opt. Lett.

Phys. Rev. A

L.-S. Ma, R. K. Shelton, H. C. Kapteyn, M. M. Murnane, and J. Ye, Phys. Rev. A 64, 021802 (2001).
[CrossRef]

Phys. Rev. Lett.

A. Zumbusch, G. R. Holtom, and X. S. Xie, Phys. Rev. Lett. 82, 4142 (1999).
[CrossRef]

A. Volkmer, J.-X. Cheng, and X. S. Xie, Phys. Rev. Lett. 87, 023901 (2001).
[CrossRef]

Proc. Natl. Acad. Sci. USA

E. O. Potma, W. P. de Boeij, P. J. M. von Haastert, and D. A. Wiersma, Proc. Natl. Acad. Sci. USA 98, 1577 (2001).
[CrossRef]

Science

R. K. Shelton, L.-S. Ma, H. C. Kapteyn, M. M. Murnane, J. L. Hall, and J. Ye, Science 293, 1286 (2001).
[CrossRef] [PubMed]

Other

MIRA 900-P, Coherent, Inc., Santa Clara, Calif. Mention of the product name is for technical communication only.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Schematic of the setup: Two ps Ti:sapphire lasers are synchronized via a dual phase-locked-loop scheme, one operating at the fundamental repetition frequency (80 MHz) and one at the 175th harmonic (14 GHz). With the repetition rates reduced by the pulse pickers, the two beams are focused by a 1.4-N.A. oil objective mounted on an inverted microscope. Sample scanning is accomplished by piezo transducers (PZTs). APD, avalanche photodiode; BBO, β-barium borate; DBMs, double balanced mixers; DM, dichroic mirror; MO, microscope objective; PSs, phase shifters.

Fig. 2
Fig. 2

(a) Second-order cross correlation (4.1 ps FWHM) of the ps pulses. The insets show the signal fluctuation for the time delay at which the signal amounts to half-maximum, observed through a 160-Hz low-pass filter for both the (left) 14-GHz and the (right) 80-MHz lock. (b) CARS signal as a function of the delay between pump and Stokes pulses (3.9 ps FWHM) recorded from a polystyrene beam (Raman shift, 1600 cm-1). The insets depict the CARS signal fluctuation at zero time delay recorded with the (left) 14-GHz and (right) 80-MHz loop. (c) Signal-to-noise ratio as a function of the square root of the CARS intensity. The filled circles indicate experimental data points, and the solid line is a linear fit.

Fig. 3
Fig. 3

E-CARS images of 1µm polystyrene beads spincast on a glass coverslip for different settings of time jitter: (a) 700 fs and (b) 21 fs. The Raman shift is 1600 cm-1. Beam powers are 0.2 mW for the pump and 0.1 mW for the Stokes beam; total acquisition time is 5 s. The arrows indicates the positions of the one-dimensional cross sections. Scale bar, 1 µm.

Fig. 4
Fig. 4

E-CARS images of 3T3 mouse fibroblast cells in aqueous buffer solution recorded at a Raman shift of 1570 cm-1. The power is 0.2 mW for the pump and 0.1 mW for the Stokes beams. (a) Image recorded with a large timing jitter of 700 fs. The image size is 512×442 pixels, and the pixel dwell time is 1.95 ms. (b) Identical image obtained with a time jitter of 21 fs. Scale bar, 10 µm.

Metrics