Abstract

The standard electric-field-induced second-harmonic (EFISH) technique for measurement of the first hyperpolarizability β of nonlinear optical molecules is limited by the fact that the second hyperpolarizability γ also contributes to the second-harmonic signal from which β is deduced. We present a modified time-resolved EFISH in which the first and the second hyperpolarizabilities can be determined separately and accurately in the same experiment. We studied para-nitro aniline dissolved in a highly viscous solvent, glycerol, under conditions whereby the electric field was applied faster than the characteristic time for molecular rotation. This technique enabled the γ contribution to the signal to be resolved separately from the β contribution. The results confirm that for this molecule γ contributes only 10% of the total EFISH hyperpolarizability.

© 2002 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. B. F. Levine and C. G. Bethea, J. Chem. Phys. 63, 2666 (1975).
    [CrossRef]
  2. J. L. Oudar and D. S. Chemla, J. Chem. Phys. 66, 2664 (1977).
    [CrossRef]
  3. L.-T. Cheng, W. Tam, S. H. Stevenson, G. R. Meredith, G. Rikken, and S. R. Marder, J. Phys. Chem. 95, 10,631 (1991).
    [CrossRef]
  4. D. Gonin, C. Noel, and F. Kajzar, Nonlin. Opt. 8, 37 (1994).
  5. M. D. Levenson, IEEE J. Quantum Electron. 10, 110 (1974).
    [CrossRef]
  6. A. Dhinojwala, G. K. Wong, and J. M. Torkelson, J. Opt. Soc. Am. B 11, 1549 (1994).
    [CrossRef]
  7. G. Meshulam, G. Berkovic, Z. Kotler, and A. Sa’ar, Rev. Sci. Instrum. 71, 3490 (2000).
    [CrossRef]
  8. G. Meshulam, G. Berkovic, and Z. Kotler, Proc. SPIE 4461, 135 (2001).
    [CrossRef]
  9. M. Stähelin, D. M. Burland, and J. E. Rice, Chem. Phys. Lett. 191, 245 (1992).
    [CrossRef]
  10. J. N. Woofdord, M. A. Pauley, and C. H. Wang, J. Phys. Chem. A 101, 1989 (1997).
    [CrossRef]

2001 (1)

G. Meshulam, G. Berkovic, and Z. Kotler, Proc. SPIE 4461, 135 (2001).
[CrossRef]

2000 (1)

G. Meshulam, G. Berkovic, Z. Kotler, and A. Sa’ar, Rev. Sci. Instrum. 71, 3490 (2000).
[CrossRef]

1997 (1)

J. N. Woofdord, M. A. Pauley, and C. H. Wang, J. Phys. Chem. A 101, 1989 (1997).
[CrossRef]

1994 (2)

A. Dhinojwala, G. K. Wong, and J. M. Torkelson, J. Opt. Soc. Am. B 11, 1549 (1994).
[CrossRef]

D. Gonin, C. Noel, and F. Kajzar, Nonlin. Opt. 8, 37 (1994).

1992 (1)

M. Stähelin, D. M. Burland, and J. E. Rice, Chem. Phys. Lett. 191, 245 (1992).
[CrossRef]

1991 (1)

L.-T. Cheng, W. Tam, S. H. Stevenson, G. R. Meredith, G. Rikken, and S. R. Marder, J. Phys. Chem. 95, 10,631 (1991).
[CrossRef]

1977 (1)

J. L. Oudar and D. S. Chemla, J. Chem. Phys. 66, 2664 (1977).
[CrossRef]

1975 (1)

B. F. Levine and C. G. Bethea, J. Chem. Phys. 63, 2666 (1975).
[CrossRef]

1974 (1)

M. D. Levenson, IEEE J. Quantum Electron. 10, 110 (1974).
[CrossRef]

Berkovic, G.

G. Meshulam, G. Berkovic, and Z. Kotler, Proc. SPIE 4461, 135 (2001).
[CrossRef]

G. Meshulam, G. Berkovic, Z. Kotler, and A. Sa’ar, Rev. Sci. Instrum. 71, 3490 (2000).
[CrossRef]

Bethea, C. G.

B. F. Levine and C. G. Bethea, J. Chem. Phys. 63, 2666 (1975).
[CrossRef]

Burland, D. M.

M. Stähelin, D. M. Burland, and J. E. Rice, Chem. Phys. Lett. 191, 245 (1992).
[CrossRef]

Chemla, D. S.

J. L. Oudar and D. S. Chemla, J. Chem. Phys. 66, 2664 (1977).
[CrossRef]

Cheng, L.-T.

L.-T. Cheng, W. Tam, S. H. Stevenson, G. R. Meredith, G. Rikken, and S. R. Marder, J. Phys. Chem. 95, 10,631 (1991).
[CrossRef]

Dhinojwala, A.

Gonin, D.

D. Gonin, C. Noel, and F. Kajzar, Nonlin. Opt. 8, 37 (1994).

Kajzar, F.

D. Gonin, C. Noel, and F. Kajzar, Nonlin. Opt. 8, 37 (1994).

Kotler, Z.

G. Meshulam, G. Berkovic, and Z. Kotler, Proc. SPIE 4461, 135 (2001).
[CrossRef]

G. Meshulam, G. Berkovic, Z. Kotler, and A. Sa’ar, Rev. Sci. Instrum. 71, 3490 (2000).
[CrossRef]

Levenson, M. D.

M. D. Levenson, IEEE J. Quantum Electron. 10, 110 (1974).
[CrossRef]

Levine, B. F.

B. F. Levine and C. G. Bethea, J. Chem. Phys. 63, 2666 (1975).
[CrossRef]

Marder, S. R.

L.-T. Cheng, W. Tam, S. H. Stevenson, G. R. Meredith, G. Rikken, and S. R. Marder, J. Phys. Chem. 95, 10,631 (1991).
[CrossRef]

Meredith, G. R.

L.-T. Cheng, W. Tam, S. H. Stevenson, G. R. Meredith, G. Rikken, and S. R. Marder, J. Phys. Chem. 95, 10,631 (1991).
[CrossRef]

Meshulam, G.

G. Meshulam, G. Berkovic, and Z. Kotler, Proc. SPIE 4461, 135 (2001).
[CrossRef]

G. Meshulam, G. Berkovic, Z. Kotler, and A. Sa’ar, Rev. Sci. Instrum. 71, 3490 (2000).
[CrossRef]

Noel, C.

D. Gonin, C. Noel, and F. Kajzar, Nonlin. Opt. 8, 37 (1994).

Oudar, J. L.

J. L. Oudar and D. S. Chemla, J. Chem. Phys. 66, 2664 (1977).
[CrossRef]

Pauley, M. A.

J. N. Woofdord, M. A. Pauley, and C. H. Wang, J. Phys. Chem. A 101, 1989 (1997).
[CrossRef]

Rice, J. E.

M. Stähelin, D. M. Burland, and J. E. Rice, Chem. Phys. Lett. 191, 245 (1992).
[CrossRef]

Rikken, G.

L.-T. Cheng, W. Tam, S. H. Stevenson, G. R. Meredith, G. Rikken, and S. R. Marder, J. Phys. Chem. 95, 10,631 (1991).
[CrossRef]

Sa’ar, A.

G. Meshulam, G. Berkovic, Z. Kotler, and A. Sa’ar, Rev. Sci. Instrum. 71, 3490 (2000).
[CrossRef]

Stähelin, M.

M. Stähelin, D. M. Burland, and J. E. Rice, Chem. Phys. Lett. 191, 245 (1992).
[CrossRef]

Stevenson, S. H.

L.-T. Cheng, W. Tam, S. H. Stevenson, G. R. Meredith, G. Rikken, and S. R. Marder, J. Phys. Chem. 95, 10,631 (1991).
[CrossRef]

Tam, W.

L.-T. Cheng, W. Tam, S. H. Stevenson, G. R. Meredith, G. Rikken, and S. R. Marder, J. Phys. Chem. 95, 10,631 (1991).
[CrossRef]

Torkelson, J. M.

Wang, C. H.

J. N. Woofdord, M. A. Pauley, and C. H. Wang, J. Phys. Chem. A 101, 1989 (1997).
[CrossRef]

Wong, G. K.

Woofdord, J. N.

J. N. Woofdord, M. A. Pauley, and C. H. Wang, J. Phys. Chem. A 101, 1989 (1997).
[CrossRef]

Chem. Phys. Lett. (1)

M. Stähelin, D. M. Burland, and J. E. Rice, Chem. Phys. Lett. 191, 245 (1992).
[CrossRef]

IEEE J. Quantum Electron. (1)

M. D. Levenson, IEEE J. Quantum Electron. 10, 110 (1974).
[CrossRef]

J. Chem. Phys. (2)

B. F. Levine and C. G. Bethea, J. Chem. Phys. 63, 2666 (1975).
[CrossRef]

J. L. Oudar and D. S. Chemla, J. Chem. Phys. 66, 2664 (1977).
[CrossRef]

J. Opt. Soc. Am. B (1)

J. Phys. Chem. (1)

L.-T. Cheng, W. Tam, S. H. Stevenson, G. R. Meredith, G. Rikken, and S. R. Marder, J. Phys. Chem. 95, 10,631 (1991).
[CrossRef]

J. Phys. Chem. A (1)

J. N. Woofdord, M. A. Pauley, and C. H. Wang, J. Phys. Chem. A 101, 1989 (1997).
[CrossRef]

Nonlin. Opt. (1)

D. Gonin, C. Noel, and F. Kajzar, Nonlin. Opt. 8, 37 (1994).

Proc. SPIE (1)

G. Meshulam, G. Berkovic, and Z. Kotler, Proc. SPIE 4461, 135 (2001).
[CrossRef]

Rev. Sci. Instrum. (1)

G. Meshulam, G. Berkovic, Z. Kotler, and A. Sa’ar, Rev. Sci. Instrum. 71, 3490 (2000).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Schematic of TREFISH response: A, profile of electric field Edct built by voltage Vt; B, γ response, identical to the electric field; C, β response; D, total nonlinear polarization, proportional to the square root of the SH signal.

Fig. 2
Fig. 2

Time dependence of the rise of the high-voltage pulse (the pulse is switched off after a few microseconds). TREFISH measurements are performed with the laser pulse at a variable time t relative to the start of the voltage pulse.

Fig. 3
Fig. 3

Results for TREFISH: PNA in glycerol (squares); pure glycerol (crosses), and PNA in methylene chloride (triangles, top). The fit for PNA in glycerol is plotted for two values of τD: 25 ns (dashed curve) and 30 ns (dotted curve) for the same Kγ and Kβ values given in the text.

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

I2ω=const.ΓGΔϵG-Γsolvent+μβ5kT+γNFΔϵLEdcIω,
I2ω=Pγ2ω+Pβ2ω=Kγ+KβEdcIω,
Kγ=const.ΓGΔϵG-ΓsolventΔϵL-γNFΔϵL, Kβ=const. μβ5kTNFΔϵL
Pγ2ωt=KγIωEdct.
dPβdt=ΔPβτD=KβIωEdct-PβτD.
Pβt=KβIωexp-t/τDτD×y=0tEdcyexpy/τDdy.
I2ωt=KγIωEdct+KβIωexp-t/τDτD×y=0tEdcyexpy/τDdy,
τD=ηV3kT.
KγKγ+Kβ=γγ+μβ/5kT=0.060.06+0.5210%.

Metrics