Abstract

We demonstrate continuously tunable compensation of linear chirp on a first-harmonic pump pulse to produce a near-transform-limited second-harmonic output pulse through the use of a chirped, fanned, periodically poled lithium niobate quasi-phase-matching grating. Compensation of positive and negative chirps is possible through reversal of device orientation. The device is simple and monolithic and can be applied to compensation of a higher-order phase with minor modification.

© 2002 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. A. Arbore, O. Marco, and M. M. Fejer, Opt. Lett. 22, 865 (1997).
    [CrossRef] [PubMed]
  2. P. Loza-Alvarez, M. Ebrahimzadeh, W. Sibbet, D. T. Reid, D. Artigas, and M. Missey, J. Opt. Soc. Am. B 18, 1212 (2001).
    [CrossRef]
  3. M. A. Arbore, A. Galvanauskas, D. Harter, M. H. Chou, and M. M. Fejer, Opt. Lett. 22, 1341 (1997).
    [CrossRef]
  4. L. Gallman, G. Steinmeyer, U. Keller, G. Imeshev, M. M. Fejer, and J.-P. Meyn, Opt. Lett. 26, 614 (2001).
    [CrossRef]
  5. K. Green, A. Galvanauskas, K. K. Wong, and D. Harter, in Nonlinear Optics: Materials, Fundamentals and Applications, Vol. 46 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2000), pp. 113–115.
  6. G. Imeshev, M. A. Arbore, M. M. Fejer, A. Galvanauskas, M. Fermann, and D. Harter, J. Opt. Soc. Am. B 17, 304 (2000).
    [CrossRef]
  7. G. Imeshev, M. M. Fejer, A. Galvanuskas, and D. Harter, J. Opt. Soc. Am. B 18, 534 (2001).
    [CrossRef]
  8. P. E. Powers, T. J. Kulp, and S. E. Bisson, Opt. Lett. 23, 159 (1998).
    [CrossRef]
  9. S. Russell, M. Missey, P. Powers, and K. Shepler, in Conference on Lasers and Electro-Optics (CLEO), Vol. 39 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2000), pp. 632–633.
  10. E. B. Treacy, IEEE J. Quantum Electron. QE-5, 454 (1969).
    [CrossRef]
  11. J. D. McMullen, Appl. Opt. 18, 737 (1979).
    [CrossRef] [PubMed]
  12. G. Imeshev, M. M. Fejer, A. Galvanauskas, and D. Harter, Opt. Lett. 26, 268 (2001).
    [CrossRef]

2001 (4)

2000 (1)

1998 (1)

1997 (2)

1979 (1)

1969 (1)

E. B. Treacy, IEEE J. Quantum Electron. QE-5, 454 (1969).
[CrossRef]

Arbore, M. A.

Artigas, D.

Bisson, S. E.

Chou, M. H.

Ebrahimzadeh, M.

Fejer, M. M.

Fermann, M.

Gallman, L.

Galvanauskas, A.

G. Imeshev, M. M. Fejer, A. Galvanauskas, and D. Harter, Opt. Lett. 26, 268 (2001).
[CrossRef]

G. Imeshev, M. A. Arbore, M. M. Fejer, A. Galvanauskas, M. Fermann, and D. Harter, J. Opt. Soc. Am. B 17, 304 (2000).
[CrossRef]

M. A. Arbore, A. Galvanauskas, D. Harter, M. H. Chou, and M. M. Fejer, Opt. Lett. 22, 1341 (1997).
[CrossRef]

K. Green, A. Galvanauskas, K. K. Wong, and D. Harter, in Nonlinear Optics: Materials, Fundamentals and Applications, Vol. 46 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2000), pp. 113–115.

Galvanuskas, A.

Green, K.

K. Green, A. Galvanauskas, K. K. Wong, and D. Harter, in Nonlinear Optics: Materials, Fundamentals and Applications, Vol. 46 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2000), pp. 113–115.

Harter, D.

Imeshev, G.

Keller, U.

Kulp, T. J.

Loza-Alvarez, P.

Marco, O.

McMullen, J. D.

Meyn, J.-P.

Missey, M.

P. Loza-Alvarez, M. Ebrahimzadeh, W. Sibbet, D. T. Reid, D. Artigas, and M. Missey, J. Opt. Soc. Am. B 18, 1212 (2001).
[CrossRef]

S. Russell, M. Missey, P. Powers, and K. Shepler, in Conference on Lasers and Electro-Optics (CLEO), Vol. 39 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2000), pp. 632–633.

Powers, P.

S. Russell, M. Missey, P. Powers, and K. Shepler, in Conference on Lasers and Electro-Optics (CLEO), Vol. 39 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2000), pp. 632–633.

Powers, P. E.

Reid, D. T.

Russell, S.

S. Russell, M. Missey, P. Powers, and K. Shepler, in Conference on Lasers and Electro-Optics (CLEO), Vol. 39 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2000), pp. 632–633.

Shepler, K.

S. Russell, M. Missey, P. Powers, and K. Shepler, in Conference on Lasers and Electro-Optics (CLEO), Vol. 39 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2000), pp. 632–633.

Sibbet, W.

Steinmeyer, G.

Treacy, E. B.

E. B. Treacy, IEEE J. Quantum Electron. QE-5, 454 (1969).
[CrossRef]

Wong, K. K.

K. Green, A. Galvanauskas, K. K. Wong, and D. Harter, in Nonlinear Optics: Materials, Fundamentals and Applications, Vol. 46 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2000), pp. 113–115.

Appl. Opt. (1)

IEEE J. Quantum Electron. (1)

E. B. Treacy, IEEE J. Quantum Electron. QE-5, 454 (1969).
[CrossRef]

J. Opt. Soc. Am. B (3)

Opt. Lett. (5)

Other (2)

K. Green, A. Galvanauskas, K. K. Wong, and D. Harter, in Nonlinear Optics: Materials, Fundamentals and Applications, Vol. 46 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2000), pp. 113–115.

S. Russell, M. Missey, P. Powers, and K. Shepler, in Conference on Lasers and Electro-Optics (CLEO), Vol. 39 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2000), pp. 632–633.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (2)

Fig. 1
Fig. 1

Fanned QPM SHG pulse-compression grating. Translation of the sample transverse to the direction of propagation produces continuous tuning of the grating chirp. Coordinate axes are drawn to coincide with crystallographic axes in our PPLN device; reversed domains are shaded gray.

Fig. 2
Fig. 2

Tuning behavior of the fanned grating device. The measured autocorrelation width is plotted (crosses) versus grating chirp. A calculated theoretical curve (solid curve) is plotted for comparison.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

Kgx=Km+2Dgx,
C2=1/2C1+δν2/Dg.
Dgy=12-yWDa+12+yWDb,
Da-Db2<24π2Λ0L3.
Kgx2π/Λx=Km+2Dgx+3Gx2

Metrics