Abstract

Digital holography with a three-wavelength laser and a color CCD has been demonstrated. With the phase shifting of the reference beam, in-line holograms for three wavelengths are recorded simultaneously for derivation of the complex amplitude at each wavelength, and then the three monochromatic images are reconstructed and combined into full-color images in the computer. Laser power variation for wavelengths can be compensated for in the reconstruction process. We have compared the images reconstructed by two algorithms using a single Fourier transformation and a convolution with each other by both experiments and numerical simulations. Phase-shifting errors arising at two of the three wavelengths have proved not to cause serious deterioration of the reconstructed images.

© 2002 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. W. Goodman and R. W. Lawrence, Appl. Phys. Lett. 11, 77 (1967).
    [CrossRef]
  2. U. Schnars and W. Jüptner, Appl. Opt. 33, 179 (1994).
    [CrossRef] [PubMed]
  3. W. S. Haddad, D. Cullen, J. C. Solem, J. W. Longworth, A. Mcpherson, K. Boyer, and C. K. Rhodes, Appl. Opt. 31, 4973 (1992).
    [CrossRef] [PubMed]
  4. T. Zhang and I. Yamaguchi, Opt. Lett. 23, 1221 (1998).
    [CrossRef]
  5. B. Skarman, J. Becker, and K. Wozniak, Flow Meas. Instrum. 7, 1 (1996).
    [CrossRef]
  6. C. Pedrini, P. Fronig, H. J. Tiziani, and M. E. Gusev, Appl. Opt. 38, 3460 (1999).
    [CrossRef]
  7. I. Yamaguchi, S. Ohta, and J. Kato, Opt. Lasers Eng. 36, 417 (2001).
    [CrossRef]
  8. E. Cuche, P. Marquet, and C. Depeursinge, Appl. Opt. 38, 6994 (1999).
    [CrossRef]
  9. E. Tajahuerce and B. Javidi, Appl. Opt. 39, 6595 (2000).
    [CrossRef]
  10. B. Javidi and E. Tajahuerce, Opt. Lett. 25, 610 (2000).
    [CrossRef]
  11. I. Yamaguchi, J. Kato, S. Ohta, and J. Mizuno, Appl. Opt. 40, 6177 (2001).
    [CrossRef]
  12. P. Hariharan, in Progress in Optics, E. Wolf, ed. (Elsevier, New York, 1983), Vol. 20, pp. 263–324.
    [CrossRef]
  13. I. Yamaguchi and T. Zhang, Opt. Lett. 22, 1268 (1997).
    [CrossRef] [PubMed]
  14. J. Garcia, D. Mas, and R. G. Dorsch, Appl. Opt. 35, 7013 (1996).
    [CrossRef]

2001 (2)

I. Yamaguchi, S. Ohta, and J. Kato, Opt. Lasers Eng. 36, 417 (2001).
[CrossRef]

I. Yamaguchi, J. Kato, S. Ohta, and J. Mizuno, Appl. Opt. 40, 6177 (2001).
[CrossRef]

2000 (2)

1999 (2)

1998 (1)

1997 (1)

1996 (2)

J. Garcia, D. Mas, and R. G. Dorsch, Appl. Opt. 35, 7013 (1996).
[CrossRef]

B. Skarman, J. Becker, and K. Wozniak, Flow Meas. Instrum. 7, 1 (1996).
[CrossRef]

1994 (1)

1992 (1)

1967 (1)

J. W. Goodman and R. W. Lawrence, Appl. Phys. Lett. 11, 77 (1967).
[CrossRef]

Becker, J.

B. Skarman, J. Becker, and K. Wozniak, Flow Meas. Instrum. 7, 1 (1996).
[CrossRef]

Boyer, K.

Cuche, E.

Cullen, D.

Depeursinge, C.

Dorsch, R. G.

Fronig, P.

Garcia, J.

Goodman, J. W.

J. W. Goodman and R. W. Lawrence, Appl. Phys. Lett. 11, 77 (1967).
[CrossRef]

Gusev, M. E.

Haddad, W. S.

Hariharan, P.

P. Hariharan, in Progress in Optics, E. Wolf, ed. (Elsevier, New York, 1983), Vol. 20, pp. 263–324.
[CrossRef]

Javidi, B.

Jüptner, W.

Kato, J.

I. Yamaguchi, J. Kato, S. Ohta, and J. Mizuno, Appl. Opt. 40, 6177 (2001).
[CrossRef]

I. Yamaguchi, S. Ohta, and J. Kato, Opt. Lasers Eng. 36, 417 (2001).
[CrossRef]

Lawrence, R. W.

J. W. Goodman and R. W. Lawrence, Appl. Phys. Lett. 11, 77 (1967).
[CrossRef]

Longworth, J. W.

Marquet, P.

Mas, D.

Mcpherson, A.

Mizuno, J.

Ohta, S.

I. Yamaguchi, J. Kato, S. Ohta, and J. Mizuno, Appl. Opt. 40, 6177 (2001).
[CrossRef]

I. Yamaguchi, S. Ohta, and J. Kato, Opt. Lasers Eng. 36, 417 (2001).
[CrossRef]

Pedrini, C.

Rhodes, C. K.

Schnars, U.

Skarman, B.

B. Skarman, J. Becker, and K. Wozniak, Flow Meas. Instrum. 7, 1 (1996).
[CrossRef]

Solem, J. C.

Tajahuerce, E.

Tiziani, H. J.

Wozniak, K.

B. Skarman, J. Becker, and K. Wozniak, Flow Meas. Instrum. 7, 1 (1996).
[CrossRef]

Yamaguchi, I.

Zhang, T.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Setup of phase-shifting color digital holography. PZT, piezoelectric transducer; NDF, neutral-density filter; BSs, beam splitters.

Fig. 2
Fig. 2

Laser lines and chromatic sensitivity of the CCD.

Fig. 3
Fig. 3

Images reconstructed by the single FFT method: (a) Images reconstructed at each wavelength. (b) Color image resulting from the weighted superposition. (c) CCD image of the object illuminated with the same laser.

Fig. 4
Fig. 4

Images reconstructed by the convolution (double FFT) method. (a)–(c) Images reconstructed at each wavelength. (d) Color image obtained by weighted superposition.

Fig. 5
Fig. 5

Cross sections of point images reconstructed at each wavelength under the same condition as in the experiment. (a) Single FFT algorithm. The x scale is given by Eq. (8), and the z scale is equal to the focal depth at the middle wavelength. (b) Double FFT algorithm. The x scale is given by the CCD pitch, and the z scale is the same as in (a).

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

Ux,y,λ=λ-1UOx,y,λ×expikzO+ikx-x2+y-y22zOdxdy,
IHx,y,λ:δ=URx,y,λexpiδ+Ux,y,λ2=UR2+U2+2RURU*expiδ,
Ux,y,λ=14UR*IHx,y,λ;0-IHx,y,λ;απ+iIHx,y,λ;απ2-IHx,y,λ;α3π2
α=λ0/λ,
UIX,Y,Z,λ=λ-1Ux,y,λ×expikZ+ikX-x2+Y-y22Zdxdy.
UIX,Y,-zo,λ=UOX,Y,λ
ZL2/λN=Np2/λZC,
ΔX=λZ/L.

Metrics