Abstract

We demonstrate the suppression of intensity fluctuations, which are known as mode partition noise, in a multiwavelength semiconductor laser by using a hybrid mode-locking scheme. The laser design incorporates a saturable absorber and a gain-modulated semiconductor optical amplifier, along with spectral filtering, in an external cavity to achieve multiwavelength hybrid mode locking. The mode-locked laser produces an error-free (pulse Q>13) 300-MHz optical pulse train in each of three wavelength channels.

© 2002 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
External cavity multiwavelength semiconductor mode-locked lasers gain dynamics

Luis C. Archundia and Peter J. Delfyett
Opt. Express 14(20) 9223-9237 (2006)

Hybrid wavelength-division and optical time-division multiplexed multiwavelength mode-locked semiconductor laser

Ikuko Nitta, J. Abeles, and Peter J. Delfyett
Appl. Opt. 39(36) 6799-6805 (2000)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (5)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription