Abstract

A model based on diffusion of dopants in a periodic structure has been applied to describe thermal decay of chemical composition gratings in fluorine–germanium-doped silica fibers. The good agreement between previously reported values and the diffusion coefficients derived here from experiments and models in the 1000–1200 °C temperature range indicate that fluorine diffusion is the main mechanism of grating decay. Experimental results also indicate that the presence of phosphorous significantly increases the decay rate of chemical composition gratings.

© 2002 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Fokine, B. E. Sahlgren, and R. Stubbe, in Bragg Gratings, Photosensitivity, and Poling in Glass Fibers and Waveguides: Applications and Fundamentals, Vol. 17 of 1997 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1997).
  2. M. Fokine, “Formation of thermally stable chemical composition gratings in optical fibers,” J. Opt. Soc. Am. B (to be published).
  3. G. Meltz, W. W. Morey, and W. H. Glenn, Opt. Lett. 14, 823 (1989).
    [CrossRef] [PubMed]
  4. W. Jost, in Diffusion in Solids, Liquids, and Gases, E. Hutchinson, ed. (Academic, New York, 1952), pp. 32–46.
  5. J. Kirchhof, S. Unger, K-F. Klein, and B. Knappe, J. Non-Cryst. Solids 181, 266 (1995).
    [CrossRef]
  6. T. Erdogan, V. Mizrahi, P. J. Lemaire, and D. Monroe, J. Appl. Phys. 76, 73 (1994).
    [CrossRef]

1995 (1)

J. Kirchhof, S. Unger, K-F. Klein, and B. Knappe, J. Non-Cryst. Solids 181, 266 (1995).
[CrossRef]

1994 (1)

T. Erdogan, V. Mizrahi, P. J. Lemaire, and D. Monroe, J. Appl. Phys. 76, 73 (1994).
[CrossRef]

1989 (1)

Erdogan, T.

T. Erdogan, V. Mizrahi, P. J. Lemaire, and D. Monroe, J. Appl. Phys. 76, 73 (1994).
[CrossRef]

Fokine, M.

M. Fokine, “Formation of thermally stable chemical composition gratings in optical fibers,” J. Opt. Soc. Am. B (to be published).

M. Fokine, B. E. Sahlgren, and R. Stubbe, in Bragg Gratings, Photosensitivity, and Poling in Glass Fibers and Waveguides: Applications and Fundamentals, Vol. 17 of 1997 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1997).

Glenn, W. H.

Jost, W.

W. Jost, in Diffusion in Solids, Liquids, and Gases, E. Hutchinson, ed. (Academic, New York, 1952), pp. 32–46.

Kirchhof, J.

J. Kirchhof, S. Unger, K-F. Klein, and B. Knappe, J. Non-Cryst. Solids 181, 266 (1995).
[CrossRef]

Klein, K-F.

J. Kirchhof, S. Unger, K-F. Klein, and B. Knappe, J. Non-Cryst. Solids 181, 266 (1995).
[CrossRef]

Knappe, B.

J. Kirchhof, S. Unger, K-F. Klein, and B. Knappe, J. Non-Cryst. Solids 181, 266 (1995).
[CrossRef]

Lemaire, P. J.

T. Erdogan, V. Mizrahi, P. J. Lemaire, and D. Monroe, J. Appl. Phys. 76, 73 (1994).
[CrossRef]

Meltz, G.

Mizrahi, V.

T. Erdogan, V. Mizrahi, P. J. Lemaire, and D. Monroe, J. Appl. Phys. 76, 73 (1994).
[CrossRef]

Monroe, D.

T. Erdogan, V. Mizrahi, P. J. Lemaire, and D. Monroe, J. Appl. Phys. 76, 73 (1994).
[CrossRef]

Morey, W. W.

Sahlgren, B. E.

M. Fokine, B. E. Sahlgren, and R. Stubbe, in Bragg Gratings, Photosensitivity, and Poling in Glass Fibers and Waveguides: Applications and Fundamentals, Vol. 17 of 1997 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1997).

Stubbe, R.

M. Fokine, B. E. Sahlgren, and R. Stubbe, in Bragg Gratings, Photosensitivity, and Poling in Glass Fibers and Waveguides: Applications and Fundamentals, Vol. 17 of 1997 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1997).

Unger, S.

J. Kirchhof, S. Unger, K-F. Klein, and B. Knappe, J. Non-Cryst. Solids 181, 266 (1995).
[CrossRef]

J. Appl. Phys. (1)

T. Erdogan, V. Mizrahi, P. J. Lemaire, and D. Monroe, J. Appl. Phys. 76, 73 (1994).
[CrossRef]

J. Non-Cryst. Solids (1)

J. Kirchhof, S. Unger, K-F. Klein, and B. Knappe, J. Non-Cryst. Solids 181, 266 (1995).
[CrossRef]

Opt. Lett. (1)

Other (3)

M. Fokine, B. E. Sahlgren, and R. Stubbe, in Bragg Gratings, Photosensitivity, and Poling in Glass Fibers and Waveguides: Applications and Fundamentals, Vol. 17 of 1997 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1997).

M. Fokine, “Formation of thermally stable chemical composition gratings in optical fibers,” J. Opt. Soc. Am. B (to be published).

W. Jost, in Diffusion in Solids, Liquids, and Gases, E. Hutchinson, ed. (Academic, New York, 1952), pp. 32–46.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Typical behavior of grating reflectivity during CCG formation. The dashed line corresponds to the peak reflectivity of the CCG and the onset t=0 of decay measurements.

Fig. 2
Fig. 2

Experimental (solid curves) and model simulations (symbols) for CCG decay in fiber I at 1005, 1054, 1105, 1154, and 1202 °C.

Fig. 3
Fig. 3

Experimental (solid curve) and model simulations (symbols) for CCG decay in fiber II at 1005 °C.

Fig. 4
Fig. 4

Arrhenius plots for diffusion coefficients in fiber I and fiber II.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

C=C02m=-erfm+1/2Λ-x2Dt-erfmΛ-x2Dt-erfmΛ-x2Dt-erfm-1/2Λ-x2Dt,

Metrics