Abstract

The propagation of an optical pulse in a coupled-resonator optical waveguide may be calculated nonperturbatively to all orders of dispersion, in the conventional tight-binding approximation, even though the dispersion relationship is nonlinear. Working in this framework, we discuss limits of the physical parameters and approximations to the exact formulation that highlight the conditions under which pulse distortion can be minimized. The results are fundamental to the design of coupled-resonator optical waveguides and are also relevant to other applications of the tight-binding method.

© 2002 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Designing coupled-resonator optical waveguide delay lines

Joyce K. S. Poon, Jacob Scheuer, Yong Xu, and Amnon Yariv
J. Opt. Soc. Am. B 21(9) 1665-1673 (2004)

Dispersion characteristics of coupled-resonator optical waveguides

Shayan Mookherjea
Opt. Lett. 30(18) 2406-2408 (2005)

Designing coupled-resonator optical waveguides based on high-Q tapered grating-defect resonators

Hsi-Chun Liu and Amnon Yariv
Opt. Express 20(8) 9249-9263 (2012)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (2)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (13)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription