Abstract

The effects of dispersion in the highly birefringent fiber Bragg grating reflectors of a polarimetric elliptical-core fiber laser sensor are experimentally and theoretically investigated. The laser sensor is designed to measure fluid pressure. It is experimentally and theoretically shown that the wavelength-dependent phase shifts in the gratings can be employed to remove the near degeneracy of the polarization mode beat frequencies of a given order, which substantially improves the resolution of the sensor. A resolution of a few parts in 106 of the free spectral range of the laser is demonstrated.

© 2002 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. K. Kim, S. K. Kim, H. G. Park, and B. Y. Kim, Opt. Lett. 18, 317 (1993).
    [CrossRef]
  2. H. K. Kim, S. K. Kim, and B. Y. Kim, Opt. Lett. 18, 1465 (1993).
    [CrossRef] [PubMed]
  3. G. A. Ball, G. Meltz, and W. W. Morey, Opt. Lett. 18, 1976 (1993).
    [CrossRef] [PubMed]
  4. J. T. Kringlebotn, W. H. Loh, and R. I. Laming, Opt. Lett. 21, 1869 (1996).
    [CrossRef] [PubMed]
  5. E. Rochat, K. Bohnert, and H. Brändle, in Conference on Lasers and Electro-Optics (CLEO), (Optical Society of America, Washington, D.C., 2001), Vol. 56 of OSA Trends in Optics and Photonics Series, p. 118.
  6. S.-Y. Huang, J. N. Blake, and B. Y. Kim, J. Lightwave Technol. 8, 23 (1990).
    [CrossRef]
  7. W. J. Bock and W. Urbanczyk, Appl. Opt. 35, 6267 (1996).
    [CrossRef] [PubMed]
  8. J. P. Dakin and C. A. Wade, Electron. Lett. 20, 51 (1984).
    [CrossRef]
  9. A. E. Siegman, Lasers (University Science Books, Mill Valley, Calif., 1986).
  10. W. P. Huang, J. Opt. Soc. Am. A 11, 963 (1994).
    [CrossRef]
  11. D. Pureur, M. Douay, P. Bernage, P. Niay, and J. F. Bayon, J. Lightwave Technol. 13, 350 (1995).
    [CrossRef]

1996 (2)

1995 (1)

D. Pureur, M. Douay, P. Bernage, P. Niay, and J. F. Bayon, J. Lightwave Technol. 13, 350 (1995).
[CrossRef]

1994 (1)

1993 (3)

1990 (1)

S.-Y. Huang, J. N. Blake, and B. Y. Kim, J. Lightwave Technol. 8, 23 (1990).
[CrossRef]

1984 (1)

J. P. Dakin and C. A. Wade, Electron. Lett. 20, 51 (1984).
[CrossRef]

Ball, G. A.

Bayon, J. F.

D. Pureur, M. Douay, P. Bernage, P. Niay, and J. F. Bayon, J. Lightwave Technol. 13, 350 (1995).
[CrossRef]

Bernage, P.

D. Pureur, M. Douay, P. Bernage, P. Niay, and J. F. Bayon, J. Lightwave Technol. 13, 350 (1995).
[CrossRef]

Blake, J. N.

S.-Y. Huang, J. N. Blake, and B. Y. Kim, J. Lightwave Technol. 8, 23 (1990).
[CrossRef]

Bock, W. J.

Bohnert, K.

E. Rochat, K. Bohnert, and H. Brändle, in Conference on Lasers and Electro-Optics (CLEO), (Optical Society of America, Washington, D.C., 2001), Vol. 56 of OSA Trends in Optics and Photonics Series, p. 118.

Brändle, H.

E. Rochat, K. Bohnert, and H. Brändle, in Conference on Lasers and Electro-Optics (CLEO), (Optical Society of America, Washington, D.C., 2001), Vol. 56 of OSA Trends in Optics and Photonics Series, p. 118.

Dakin, J. P.

J. P. Dakin and C. A. Wade, Electron. Lett. 20, 51 (1984).
[CrossRef]

Douay, M.

D. Pureur, M. Douay, P. Bernage, P. Niay, and J. F. Bayon, J. Lightwave Technol. 13, 350 (1995).
[CrossRef]

Huang, S.-Y.

S.-Y. Huang, J. N. Blake, and B. Y. Kim, J. Lightwave Technol. 8, 23 (1990).
[CrossRef]

Huang, W. P.

Kim, B. Y.

Kim, H. K.

Kim, S. K.

Kringlebotn, J. T.

Laming, R. I.

Loh, W. H.

Meltz, G.

Morey, W. W.

Niay, P.

D. Pureur, M. Douay, P. Bernage, P. Niay, and J. F. Bayon, J. Lightwave Technol. 13, 350 (1995).
[CrossRef]

Park, H. G.

Pureur, D.

D. Pureur, M. Douay, P. Bernage, P. Niay, and J. F. Bayon, J. Lightwave Technol. 13, 350 (1995).
[CrossRef]

Rochat, E.

E. Rochat, K. Bohnert, and H. Brändle, in Conference on Lasers and Electro-Optics (CLEO), (Optical Society of America, Washington, D.C., 2001), Vol. 56 of OSA Trends in Optics and Photonics Series, p. 118.

Siegman, A. E.

A. E. Siegman, Lasers (University Science Books, Mill Valley, Calif., 1986).

Urbanczyk, W.

Wade, C. A.

J. P. Dakin and C. A. Wade, Electron. Lett. 20, 51 (1984).
[CrossRef]

Appl. Opt. (1)

Electron. Lett. (1)

J. P. Dakin and C. A. Wade, Electron. Lett. 20, 51 (1984).
[CrossRef]

J. Lightwave Technol. (2)

S.-Y. Huang, J. N. Blake, and B. Y. Kim, J. Lightwave Technol. 8, 23 (1990).
[CrossRef]

D. Pureur, M. Douay, P. Bernage, P. Niay, and J. F. Bayon, J. Lightwave Technol. 13, 350 (1995).
[CrossRef]

J. Opt. Soc. Am. A (1)

Opt. Lett. (4)

Other (2)

E. Rochat, K. Bohnert, and H. Brändle, in Conference on Lasers and Electro-Optics (CLEO), (Optical Society of America, Washington, D.C., 2001), Vol. 56 of OSA Trends in Optics and Photonics Series, p. 118.

A. E. Siegman, Lasers (University Science Books, Mill Valley, Calif., 1986).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

(a) Polarimetric elliptical-core fiber laser sensor. The reflection spectra of the birefringent fiber Bragg grating (FBG) reflectors are schematically illustrated. (b) Schematic reflection spectra of the two gratings for x- and y-polarized light for identical Bragg wavelengths and with one grating detuned by a fraction of the grating bandwidth. Dotted vertical lines mark the laser emission wavelengths.

Fig. 2
Fig. 2

LMB and PMB signals. Inset, PMB signals near 15 MHz at high resolution for various differences, ΔλB, in Bragg wavelength of the two grating reflectors.

Fig. 3
Fig. 3

Experimental and computed fiber grating transmission spectra and computed relative phase shift of reflected waves. Squares and triangles at relative wavelengths of ±1/2Δλbiref+ΔλB mark phase shifts for ΔλB=0 and ΔλB=50 pm, with Δλbiref=60 pm. Note that in terms of absolute wavelength the points coincide as indicated in Fig. 1(b).

Fig. 4
Fig. 4

Experimental and computed frequency separation δνPMB of PMB signals versus difference in Bragg wavelength of the fiber grating reflectors.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

2πp=φfFBG1νp+4πνpnfL1/c+4πνpnsL2/c+φsFBG2νp,
2πq=φsFBG1νq+4πνqnsL1/c+4πνqnfL2/c+φfFBG2νq,
δνPMBΔνB=absφν1/2Δνbiref+ΔνB-φν1/2Δνbiref-ΔνBπ2nL/c2.

Metrics