Abstract

Using a real-time Fourier-transform algorithm, we present a simple technique for measuring the chirp of femtosecond laser pulses. We demonstrate significantly enhanced sensitivity compared with standard autocorrelation measurements.

© 2002 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. L. A. Chilla and O. E. Martinez, Opt. Lett. 16, 39 (1991).
    [CrossRef] [PubMed]
  2. D. J. Kane and R. Trebino, IEEE J. Quantum Electron. 29, 571 (1993).
    [CrossRef]
  3. C. Iaconis and I. A. Walmsley, Opt. Lett. 23, 792 (1998).
    [CrossRef]
  4. J. W. Nicholson, J. Jasapara, W. Rudolph, F. G. Ome-netto, and A. J. Taylor, Opt. Lett. 24, 1774 (1999).
    [CrossRef]
  5. J. C. M. Diels, J. J. Fontaine, I. C. McMichael, and F. Simoni, Appl. Opt. 24, 1270 (1985).
    [CrossRef]
  6. J.-C. Diels and W. Rudolph, Ultrashort Laser Pulse Phenomena: Fundamentals, Techniques and Applications on a Femtosecond Time Scale (Academic, San Diego, Calif., 1996).
  7. M. Sheik-Bahae, Opt. Lett. 22, 399 (1997).
    [CrossRef] [PubMed]
  8. L. Sarger, P. Segonds, L. Canioni, F. Adamietz, A. Ducasse, C. Duchesne, E. Fargin, R. Olazcuaga, and G. Leflem, J. Opt. Soc. Am. B 11, 995 (1994).
    [CrossRef]
  9. D. T. Reid, W. Sibbett, J. M. Dudley, L. P. Barry, B. Thomsen, and J. D. Harvey, Appl. Opt. 37, 8142 (1998).
    [CrossRef]
  10. M. V. Klein and T. E. Furtak, Optics, 2nd ed. (Wiley, New York, 1986).

1999 (1)

1998 (2)

1997 (1)

1994 (1)

1993 (1)

D. J. Kane and R. Trebino, IEEE J. Quantum Electron. 29, 571 (1993).
[CrossRef]

1991 (1)

1985 (1)

Adamietz, F.

Barry, L. P.

Canioni, L.

Chilla, J. L. A.

Diels, J. C. M.

Diels, J.-C.

J.-C. Diels and W. Rudolph, Ultrashort Laser Pulse Phenomena: Fundamentals, Techniques and Applications on a Femtosecond Time Scale (Academic, San Diego, Calif., 1996).

Ducasse, A.

Duchesne, C.

Dudley, J. M.

Fargin, E.

Fontaine, J. J.

Furtak, T. E.

M. V. Klein and T. E. Furtak, Optics, 2nd ed. (Wiley, New York, 1986).

Harvey, J. D.

Iaconis, C.

Jasapara, J.

Kane, D. J.

D. J. Kane and R. Trebino, IEEE J. Quantum Electron. 29, 571 (1993).
[CrossRef]

Klein, M. V.

M. V. Klein and T. E. Furtak, Optics, 2nd ed. (Wiley, New York, 1986).

Leflem, G.

Martinez, O. E.

McMichael, I. C.

Nicholson, J. W.

Olazcuaga, R.

Ome-netto, F. G.

Reid, D. T.

Rudolph, W.

J. W. Nicholson, J. Jasapara, W. Rudolph, F. G. Ome-netto, and A. J. Taylor, Opt. Lett. 24, 1774 (1999).
[CrossRef]

J.-C. Diels and W. Rudolph, Ultrashort Laser Pulse Phenomena: Fundamentals, Techniques and Applications on a Femtosecond Time Scale (Academic, San Diego, Calif., 1996).

Sarger, L.

Segonds, P.

Sheik-Bahae, M.

Sibbett, W.

Simoni, F.

Taylor, A. J.

Thomsen, B.

Trebino, R.

D. J. Kane and R. Trebino, IEEE J. Quantum Electron. 29, 571 (1993).
[CrossRef]

Walmsley, I. A.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Calculated autocorrelation traces corresponding to IAC and MOSAIC for various degrees of linear chirp obtained when we set a=0 (top), a=0.15 (middle), and a=0.25 (bottom).

Fig. 2
Fig. 2

Measured IAC and the corresponding MOSAIC traces for a cw mode-locked Ti:sapphire laser. We varied the chirp of the pulses by causing the laser beam to propagate through a 6-mm-thick SiO2 window for (a) zero, (b) two, (c) three, and (d) five passes.

Fig. 3
Fig. 3

Calculated MOSAIC peak as a function of the normalized mean chirp for different orders of chirp.

Fig. 4
Fig. 4

Contour plots depicting mean chirp (left) and the corresponding MOSAIC peak (right) as the first- and third-order chirps (i.e., a and c parameters) vary in sign and magnitude.

Fig. 5
Fig. 5

MOSAIC peak corresponding to the data in Fig. 2 plotted versus the propagation distance in SiO2. We calculated the solid curve by using the known dispersion for SiO2 and assuming an initial chirp for the laser pulse, using a=0, b=0.08±0.02, and c=0.024±0.003.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

SIACτ=1+2ftft+τdτ+ftft+τcos2ωτ+2Δϕdt+2f1/2tf3/2t+τcosωτ+Δϕdt+2f3/2tf1/2t+τcosωτ+Δϕdt,
SMOSAICτ=1+2ftft+τdt+2ftft+τcos2ωτ+2Δϕdt.
SMOSAICτ=gτ+gs2τ+gc2τ1/2×cos2ωτ+Φτ,
gsτ=ftft+τsin2Δϕdt,gcτ=ftft+τcos2Δϕdt
SMOSAICminτ=gτ-gs2τ+gc2τ1/2.

Metrics