Abstract

We report what is to our knowledge the first volume-holographic optical imaging instrument with the capability to return three-dimensional spatial as well as spectral information about semitranslucent microscopic objects in a single measurement. The four-dimensional volume-holographic microscope is characterized theoretically and experimentally by use of fluorescent microspheres as objects.

© 2002 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Minsky, “Microscopy apparatus,” U.S. patent3,013,467 (December19, 1961).
  2. T. Wilson, Confocal Microscopy (Academic, San Diego, Calif., 1990).
  3. J. K. Stevens, L. R. Mills, and J. E. Trogadis, eds., Three-Dimensional Confocal Microscopy: Volume Investigation of Biological Systems (Academic, San Diego, Calif., 1994).
  4. D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hen, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, Science254, 1178 (1991).
    [CrossRef]
  5. U. Morgner, W. Drexler, F. X. Kartner, X. D. Li, C. Pitris, E. P. Ippen, and J. G. Fujimoto, Opt. Lett. 25, 111 (2000).
    [CrossRef]
  6. W. H. Carter and E. Wolf, Opt. Acta 28, 227 (1981).
    [CrossRef]
  7. K. Itoh and Y. Ohtsuka, J. Opt. Soc. Am. A 3, 94 (1986).
    [CrossRef]
  8. J. Rosen and A. Yariv, J. Opt. Soc. Am. A 13, 2091 (1996).
    [CrossRef]
  9. D. L. Marks, R. A. Stack, D. J. Brady, D. C. Munson, and R. B. Brady, Science 284, 2164 (1999).
    [CrossRef] [PubMed]
  10. G. Barbastathis and D. Psaltis, Opt. Lett. 21, 429 (1996).
    [CrossRef]
  11. G. Barbastathis, M. Balberg, and D. J. Brady, Opt. Lett. 24, 811 (1999).
    [CrossRef]
  12. G. Barbastathis and D. J. Brady, Proc. IEEE 87, 2098 (1999).
    [CrossRef]
  13. H. Lee, X.-G. Gu, and D. Psaltis, J. Appl. Phys. 65, 2191 (1989).
    [CrossRef]
  14. D. Psaltis, F. Mok, and H. Y.-S. Li, Opt. Lett. 19, 210 (1994).
    [CrossRef]

2000 (1)

1999 (3)

D. L. Marks, R. A. Stack, D. J. Brady, D. C. Munson, and R. B. Brady, Science 284, 2164 (1999).
[CrossRef] [PubMed]

G. Barbastathis and D. J. Brady, Proc. IEEE 87, 2098 (1999).
[CrossRef]

G. Barbastathis, M. Balberg, and D. J. Brady, Opt. Lett. 24, 811 (1999).
[CrossRef]

1996 (2)

1994 (1)

1989 (1)

H. Lee, X.-G. Gu, and D. Psaltis, J. Appl. Phys. 65, 2191 (1989).
[CrossRef]

1986 (1)

1981 (1)

W. H. Carter and E. Wolf, Opt. Acta 28, 227 (1981).
[CrossRef]

Balberg, M.

Barbastathis, G.

Brady, D. J.

D. L. Marks, R. A. Stack, D. J. Brady, D. C. Munson, and R. B. Brady, Science 284, 2164 (1999).
[CrossRef] [PubMed]

G. Barbastathis and D. J. Brady, Proc. IEEE 87, 2098 (1999).
[CrossRef]

G. Barbastathis, M. Balberg, and D. J. Brady, Opt. Lett. 24, 811 (1999).
[CrossRef]

Brady, R. B.

D. L. Marks, R. A. Stack, D. J. Brady, D. C. Munson, and R. B. Brady, Science 284, 2164 (1999).
[CrossRef] [PubMed]

Carter, W. H.

W. H. Carter and E. Wolf, Opt. Acta 28, 227 (1981).
[CrossRef]

Chang, W.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hen, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, Science254, 1178 (1991).
[CrossRef]

Drexler, W.

Flotte, T.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hen, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, Science254, 1178 (1991).
[CrossRef]

Fujimoto, J. G.

U. Morgner, W. Drexler, F. X. Kartner, X. D. Li, C. Pitris, E. P. Ippen, and J. G. Fujimoto, Opt. Lett. 25, 111 (2000).
[CrossRef]

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hen, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, Science254, 1178 (1991).
[CrossRef]

Gregory, K.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hen, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, Science254, 1178 (1991).
[CrossRef]

Gu, X.-G.

H. Lee, X.-G. Gu, and D. Psaltis, J. Appl. Phys. 65, 2191 (1989).
[CrossRef]

Hen, M. R.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hen, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, Science254, 1178 (1991).
[CrossRef]

Huang, D.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hen, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, Science254, 1178 (1991).
[CrossRef]

Ippen, E. P.

Itoh, K.

Kartner, F. X.

Lee, H.

H. Lee, X.-G. Gu, and D. Psaltis, J. Appl. Phys. 65, 2191 (1989).
[CrossRef]

Li, H. Y.-S.

Li, X. D.

Lin, C. P.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hen, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, Science254, 1178 (1991).
[CrossRef]

Marks, D. L.

D. L. Marks, R. A. Stack, D. J. Brady, D. C. Munson, and R. B. Brady, Science 284, 2164 (1999).
[CrossRef] [PubMed]

Minsky, M.

M. Minsky, “Microscopy apparatus,” U.S. patent3,013,467 (December19, 1961).

Mok, F.

Morgner, U.

Munson, D. C.

D. L. Marks, R. A. Stack, D. J. Brady, D. C. Munson, and R. B. Brady, Science 284, 2164 (1999).
[CrossRef] [PubMed]

Ohtsuka, Y.

Pitris, C.

Psaltis, D.

Puliafito, C. A.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hen, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, Science254, 1178 (1991).
[CrossRef]

Rosen, J.

Schuman, J. S.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hen, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, Science254, 1178 (1991).
[CrossRef]

Stack, R. A.

D. L. Marks, R. A. Stack, D. J. Brady, D. C. Munson, and R. B. Brady, Science 284, 2164 (1999).
[CrossRef] [PubMed]

Stinson, W. G.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hen, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, Science254, 1178 (1991).
[CrossRef]

Swanson, E. A.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hen, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, Science254, 1178 (1991).
[CrossRef]

Wilson, T.

T. Wilson, Confocal Microscopy (Academic, San Diego, Calif., 1990).

Wolf, E.

W. H. Carter and E. Wolf, Opt. Acta 28, 227 (1981).
[CrossRef]

Yariv, A.

J. Appl. Phys. (1)

H. Lee, X.-G. Gu, and D. Psaltis, J. Appl. Phys. 65, 2191 (1989).
[CrossRef]

J. Opt. Soc. Am. A (2)

Opt. Acta (1)

W. H. Carter and E. Wolf, Opt. Acta 28, 227 (1981).
[CrossRef]

Opt. Lett. (4)

Proc. IEEE (1)

G. Barbastathis and D. J. Brady, Proc. IEEE 87, 2098 (1999).
[CrossRef]

Science (1)

D. L. Marks, R. A. Stack, D. J. Brady, D. C. Munson, and R. B. Brady, Science 284, 2164 (1999).
[CrossRef] [PubMed]

Other (4)

M. Minsky, “Microscopy apparatus,” U.S. patent3,013,467 (December19, 1961).

T. Wilson, Confocal Microscopy (Academic, San Diego, Calif., 1990).

J. K. Stevens, L. R. Mills, and J. E. Trogadis, eds., Three-Dimensional Confocal Microscopy: Volume Investigation of Biological Systems (Academic, San Diego, Calif., 1994).

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hen, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, Science254, 1178 (1991).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Volume-holographic 4D imaging principle.

Fig. 2
Fig. 2

Experimental recording and imaging geometry.

Fig. 3
Fig. 3

Diffraction efficiency of theoretical calculation (solid curves) and experimental measurement (dotted curves) as a function (a) of Δxp and (b) Δzp in Fig. 2. The hologram was recorded and probed with an Ar+ laser at 488 nm, with a 10×, 0.25-N.A. objective lens as the collimating lens, in holographic Dupont HRF-150 photopolymer (D=100 µm, n1.5), leading to resolution Δxp=104 µm (first null) and Δzp=400 µm (FWHM).

Fig. 4
Fig. 4

Observation of Bragg degeneracies in Fig. 2, with a 10×, 0.25-N.A. objective lens in a holographic material, LiNbO3 D=5 mm. (a) Response to a point source object of varying wavelength and moving along lateral xˆ position. (b) Response to a mask (2D object) illuminated with white light.

Fig. 5
Fig. 5

Simultaneous optical sectioning by use of multiplexed holograms. Three holograms were recorded at 488 nm (see Fig. 2) with a 40×, 0.65-N.A. objective lens in a holographic material, phenanthrequinone-embedded PMMA (D=2 mm, n1.5). Three recording point sources were on axis and separated by 50 µm in the longitudinal (depth) direction. Each hologram had a spatial–spectral resolution of Δzp=3 µm (FWHM), Δxp=1 µm (first null), and Δλp=0.16 nm. (a) Response to monochromatic probing point source λr=488 nm along depth. (b) Simultaneous imaging of three slices from a liquid sample containing fluorescent microspheres (Molecular Probes F-8844 polystyrene microsphere, fluorescent yellow-green 505–515-nm, diameter 15 µm, pumped at 488 nm).

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

ΔθS=Δxpfc=λD1cos θStan θSn+tan θRn,
ηΔzp=1α0αsinc2tΔθSdtΔθS2παSi2παΔθS,
Δβ=λrnDcos θRn1-cosθSn+θRn.
Δxpfc=-Δλpλr

Metrics