Abstract

Polarization mode dispersion (PMD) of amplifying or transmitting fibers may significantly change the polarization dependence of Raman gain. Experimental results are presented that show low polarization dependence of the Raman gain in dispersion-compensating fibers with high PMD values for both copropagating and counterpropagating pumping configurations. The measured data demonstrate that it is possible to avoid the need for depolarization of a pump source in Raman amplifiers.

© 2002 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. H. Stolen, E. P. Ippen, and A. R. Tynes, Appl. Phys. Lett. 20, 62 (1972).
    [CrossRef]
  2. R. H. Stolen and E. P. Ippen, Appl. Phys. Lett. 22, 276 (1973).
    [CrossRef]
  3. Y. Emori, K. Tanaka, and S. Namiki, Electron. Lett. 35, 1355 (1999).
    [CrossRef]
  4. S. Namiki and Y. Emori, in Optical Fiber Communication Conference, Vol. 37 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2000), pp. 98–99.
  5. C. Fludger, A. Maroney, and N. Jolley, in Optical Fiber Communication Conference, Vol. 37 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2000), pp. 100–102.
  6. M. Islam and M. Nietubye, Laser Focus World 3(x), 53 (2001).
  7. P. Ebrahimi, M. C. Hauer, Q. Yu, R. Khosravani, D. Gurkan, D. W. Kim, D. W. Lee, and A. E. Willner, in Conference on Lasers and Electro-Optics (CLEO), Vol. 56 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2000), pp. 143–144.
  8. M. Karlsson, J. Brentel, and P. Andrekson, J. Lightwave Technol. 18, 941 (2000).
    [CrossRef]

2001

M. Islam and M. Nietubye, Laser Focus World 3(x), 53 (2001).

2000

1999

Y. Emori, K. Tanaka, and S. Namiki, Electron. Lett. 35, 1355 (1999).
[CrossRef]

1973

R. H. Stolen and E. P. Ippen, Appl. Phys. Lett. 22, 276 (1973).
[CrossRef]

1972

R. H. Stolen, E. P. Ippen, and A. R. Tynes, Appl. Phys. Lett. 20, 62 (1972).
[CrossRef]

Andrekson, P.

Brentel, J.

Ebrahimi, P.

P. Ebrahimi, M. C. Hauer, Q. Yu, R. Khosravani, D. Gurkan, D. W. Kim, D. W. Lee, and A. E. Willner, in Conference on Lasers and Electro-Optics (CLEO), Vol. 56 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2000), pp. 143–144.

Emori, Y.

Y. Emori, K. Tanaka, and S. Namiki, Electron. Lett. 35, 1355 (1999).
[CrossRef]

S. Namiki and Y. Emori, in Optical Fiber Communication Conference, Vol. 37 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2000), pp. 98–99.

Fludger, C.

C. Fludger, A. Maroney, and N. Jolley, in Optical Fiber Communication Conference, Vol. 37 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2000), pp. 100–102.

Gurkan, D.

P. Ebrahimi, M. C. Hauer, Q. Yu, R. Khosravani, D. Gurkan, D. W. Kim, D. W. Lee, and A. E. Willner, in Conference on Lasers and Electro-Optics (CLEO), Vol. 56 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2000), pp. 143–144.

Hauer, M. C.

P. Ebrahimi, M. C. Hauer, Q. Yu, R. Khosravani, D. Gurkan, D. W. Kim, D. W. Lee, and A. E. Willner, in Conference on Lasers and Electro-Optics (CLEO), Vol. 56 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2000), pp. 143–144.

Ippen, E. P.

R. H. Stolen and E. P. Ippen, Appl. Phys. Lett. 22, 276 (1973).
[CrossRef]

R. H. Stolen, E. P. Ippen, and A. R. Tynes, Appl. Phys. Lett. 20, 62 (1972).
[CrossRef]

Islam, M.

M. Islam and M. Nietubye, Laser Focus World 3(x), 53 (2001).

Jolley, N.

C. Fludger, A. Maroney, and N. Jolley, in Optical Fiber Communication Conference, Vol. 37 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2000), pp. 100–102.

Karlsson, M.

Khosravani, R.

P. Ebrahimi, M. C. Hauer, Q. Yu, R. Khosravani, D. Gurkan, D. W. Kim, D. W. Lee, and A. E. Willner, in Conference on Lasers and Electro-Optics (CLEO), Vol. 56 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2000), pp. 143–144.

Kim, D. W.

P. Ebrahimi, M. C. Hauer, Q. Yu, R. Khosravani, D. Gurkan, D. W. Kim, D. W. Lee, and A. E. Willner, in Conference on Lasers and Electro-Optics (CLEO), Vol. 56 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2000), pp. 143–144.

Lee, D. W.

P. Ebrahimi, M. C. Hauer, Q. Yu, R. Khosravani, D. Gurkan, D. W. Kim, D. W. Lee, and A. E. Willner, in Conference on Lasers and Electro-Optics (CLEO), Vol. 56 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2000), pp. 143–144.

Maroney, A.

C. Fludger, A. Maroney, and N. Jolley, in Optical Fiber Communication Conference, Vol. 37 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2000), pp. 100–102.

Namiki, S.

Y. Emori, K. Tanaka, and S. Namiki, Electron. Lett. 35, 1355 (1999).
[CrossRef]

S. Namiki and Y. Emori, in Optical Fiber Communication Conference, Vol. 37 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2000), pp. 98–99.

Nietubye, M.

M. Islam and M. Nietubye, Laser Focus World 3(x), 53 (2001).

Stolen, R. H.

R. H. Stolen and E. P. Ippen, Appl. Phys. Lett. 22, 276 (1973).
[CrossRef]

R. H. Stolen, E. P. Ippen, and A. R. Tynes, Appl. Phys. Lett. 20, 62 (1972).
[CrossRef]

Tanaka, K.

Y. Emori, K. Tanaka, and S. Namiki, Electron. Lett. 35, 1355 (1999).
[CrossRef]

Tynes, A. R.

R. H. Stolen, E. P. Ippen, and A. R. Tynes, Appl. Phys. Lett. 20, 62 (1972).
[CrossRef]

Willner, A. E.

P. Ebrahimi, M. C. Hauer, Q. Yu, R. Khosravani, D. Gurkan, D. W. Kim, D. W. Lee, and A. E. Willner, in Conference on Lasers and Electro-Optics (CLEO), Vol. 56 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2000), pp. 143–144.

Yu, Q.

P. Ebrahimi, M. C. Hauer, Q. Yu, R. Khosravani, D. Gurkan, D. W. Kim, D. W. Lee, and A. E. Willner, in Conference on Lasers and Electro-Optics (CLEO), Vol. 56 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2000), pp. 143–144.

Appl. Phys. Lett.

R. H. Stolen, E. P. Ippen, and A. R. Tynes, Appl. Phys. Lett. 20, 62 (1972).
[CrossRef]

R. H. Stolen and E. P. Ippen, Appl. Phys. Lett. 22, 276 (1973).
[CrossRef]

Electron. Lett.

Y. Emori, K. Tanaka, and S. Namiki, Electron. Lett. 35, 1355 (1999).
[CrossRef]

J. Lightwave Technol.

Laser Focus World

M. Islam and M. Nietubye, Laser Focus World 3(x), 53 (2001).

Other

P. Ebrahimi, M. C. Hauer, Q. Yu, R. Khosravani, D. Gurkan, D. W. Kim, D. W. Lee, and A. E. Willner, in Conference on Lasers and Electro-Optics (CLEO), Vol. 56 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2000), pp. 143–144.

S. Namiki and Y. Emori, in Optical Fiber Communication Conference, Vol. 37 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2000), pp. 98–99.

C. Fludger, A. Maroney, and N. Jolley, in Optical Fiber Communication Conference, Vol. 37 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2000), pp. 100–102.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Block diagram of measurement setup: (a) copropagating, (b) counterpropagating pump configuration.

Fig. 2
Fig. 2

Polarization dependence of Raman gain in DCF with PMD of 0.22 ps. The pump wavelength is 1438 nm: (a) copropagating and (b) counterpropagating pump configuration. Dashed curves, polarization-dependent output signal without pump (because of PDL of optical components); solid curves, polarization-dependent amplified signal with a polarized pump source; dotted–dashed curves, polarization-dependent amplified signal with a depolarized pump source.

Fig. 3
Fig. 3

Polarization dependence of Raman gain in DCF with PMD of 0.72 ps. The pump wavelength is 1438 nm: (a) copropagating and (b) counterpropagating pump configuration. The curves are as defined in Fig. 2.

Fig. 4
Fig. 4

Polarization dependence of Raman gain for the copropagating pump configuration in DCF with PMD of (a) 0.22 ps and (b) 0.72 ps. Pumping wavelength is 1480 nm. The curves are as defined in Fig. 2.

Fig. 5
Fig. 5

Relative polarization dependence of the Raman gain versus frequency difference between the pump and probe signals. The Raman gain in DCF with PMD value of 0.22 ps.

Metrics