Abstract

We report a simple extension of the Z-scan technique that permits a spectral line-shape measurement of the real and the imaginary parts of n2. In this technique the sample is placed at the peak position of the usual Z-scan curve while the laser frequency is scanned. We employed this method to investigate the nonlinear susceptibility of the R lines of ruby and alexandrite, using a cw dye laser. This susceptibility can be explained by the resonant interaction and by a nonresonant contribution that is due to the difference in polarizability between Cr3+ excited and ground states. For ruby, the nonresonant contribution to the technique is 1 order of magnitude larger than the resonant contribution. However, for alexandrite both contributions are comparable, and their interference leads to a shift between n2 and n2 spectra that is not observed in ruby.

© 2002 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. C. Powell and S. A. Payne, Opt. Lett. 15, 1233 (1990).
    [CrossRef] [PubMed]
  2. A. Agnesi, G. Gabetta, and G. C. Reali, J. Appl. Phys. 71, 6207 (1992).
    [CrossRef]
  3. O. L. Antipov, S. I. Belyaev, A. S. Kuzhelev, and D. V. Chausov, J. Opt. Soc. Am. B 15, 2276 (1998).
    [CrossRef]
  4. J. M. Hendricks, D. P. Shepherd, H. L. Offerhaus, M. Kaczmarek, R. W. Eason, and M. J. Damzen, Opt. Commun. 190, 357 (2001).
    [CrossRef]
  5. P. Sillard, A. Brignon, and J. P. Huignard, J. Opt. Soc. Am. B 14, 2049 (1997).
    [CrossRef]
  6. L. G. Luo, R. F. Peng, and P. L. Chu, Opt. Commun. 156, 275 (1998).
    [CrossRef]
  7. S. A. Boothroyd, A. Skirtach, L. Chan, and A. Akmaloni, IEEE J. Quantum Electron. 35, 39 (1999).
    [CrossRef]
  8. G. R. Atkins, Z. Brodzeli, and J. W. Arkwright, Opt. Lett. 23, 603 (1998).
    [CrossRef]
  9. T. Catunda, J. P. Andreeta, and J. Castro, Appl. Opt. 25, 2391 (1986).
    [CrossRef]
  10. T. Catunda and L. A. O. Nunes, Phys. Rev. B 45, 10,087 (1992).
    [CrossRef]
  11. L. C. Oliveira and S. C. Zilio, Appl. Phys. Lett. 65, 2121 (1994).
    [CrossRef]
  12. V. Pilla, P. R. Impinnisi, and T. Catunda, Appl. Phys. Lett. 70, 817 (1997).
    [CrossRef]
  13. M. Sheik-Bahae, A. A. Said, T. Wei, D. J. Hagan, and E. W. Van Stryland, IEEE J. Quantum Electron. 26, 760 (1990).
    [CrossRef]

2001 (1)

J. M. Hendricks, D. P. Shepherd, H. L. Offerhaus, M. Kaczmarek, R. W. Eason, and M. J. Damzen, Opt. Commun. 190, 357 (2001).
[CrossRef]

1999 (1)

S. A. Boothroyd, A. Skirtach, L. Chan, and A. Akmaloni, IEEE J. Quantum Electron. 35, 39 (1999).
[CrossRef]

1998 (3)

1997 (2)

P. Sillard, A. Brignon, and J. P. Huignard, J. Opt. Soc. Am. B 14, 2049 (1997).
[CrossRef]

V. Pilla, P. R. Impinnisi, and T. Catunda, Appl. Phys. Lett. 70, 817 (1997).
[CrossRef]

1994 (1)

L. C. Oliveira and S. C. Zilio, Appl. Phys. Lett. 65, 2121 (1994).
[CrossRef]

1992 (2)

A. Agnesi, G. Gabetta, and G. C. Reali, J. Appl. Phys. 71, 6207 (1992).
[CrossRef]

T. Catunda and L. A. O. Nunes, Phys. Rev. B 45, 10,087 (1992).
[CrossRef]

1990 (2)

M. Sheik-Bahae, A. A. Said, T. Wei, D. J. Hagan, and E. W. Van Stryland, IEEE J. Quantum Electron. 26, 760 (1990).
[CrossRef]

R. C. Powell and S. A. Payne, Opt. Lett. 15, 1233 (1990).
[CrossRef] [PubMed]

1986 (1)

Agnesi, A.

A. Agnesi, G. Gabetta, and G. C. Reali, J. Appl. Phys. 71, 6207 (1992).
[CrossRef]

Akmaloni, A.

S. A. Boothroyd, A. Skirtach, L. Chan, and A. Akmaloni, IEEE J. Quantum Electron. 35, 39 (1999).
[CrossRef]

Andreeta, J. P.

Antipov, O. L.

Arkwright, J. W.

Atkins, G. R.

Belyaev, S. I.

Boothroyd, S. A.

S. A. Boothroyd, A. Skirtach, L. Chan, and A. Akmaloni, IEEE J. Quantum Electron. 35, 39 (1999).
[CrossRef]

Brignon, A.

Brodzeli, Z.

Castro, J.

Catunda, T.

V. Pilla, P. R. Impinnisi, and T. Catunda, Appl. Phys. Lett. 70, 817 (1997).
[CrossRef]

T. Catunda and L. A. O. Nunes, Phys. Rev. B 45, 10,087 (1992).
[CrossRef]

T. Catunda, J. P. Andreeta, and J. Castro, Appl. Opt. 25, 2391 (1986).
[CrossRef]

Chan, L.

S. A. Boothroyd, A. Skirtach, L. Chan, and A. Akmaloni, IEEE J. Quantum Electron. 35, 39 (1999).
[CrossRef]

Chausov, D. V.

Chu, P. L.

L. G. Luo, R. F. Peng, and P. L. Chu, Opt. Commun. 156, 275 (1998).
[CrossRef]

Damzen, M. J.

J. M. Hendricks, D. P. Shepherd, H. L. Offerhaus, M. Kaczmarek, R. W. Eason, and M. J. Damzen, Opt. Commun. 190, 357 (2001).
[CrossRef]

Eason, R. W.

J. M. Hendricks, D. P. Shepherd, H. L. Offerhaus, M. Kaczmarek, R. W. Eason, and M. J. Damzen, Opt. Commun. 190, 357 (2001).
[CrossRef]

Gabetta, G.

A. Agnesi, G. Gabetta, and G. C. Reali, J. Appl. Phys. 71, 6207 (1992).
[CrossRef]

Hagan, D. J.

M. Sheik-Bahae, A. A. Said, T. Wei, D. J. Hagan, and E. W. Van Stryland, IEEE J. Quantum Electron. 26, 760 (1990).
[CrossRef]

Hendricks, J. M.

J. M. Hendricks, D. P. Shepherd, H. L. Offerhaus, M. Kaczmarek, R. W. Eason, and M. J. Damzen, Opt. Commun. 190, 357 (2001).
[CrossRef]

Huignard, J. P.

Impinnisi, P. R.

V. Pilla, P. R. Impinnisi, and T. Catunda, Appl. Phys. Lett. 70, 817 (1997).
[CrossRef]

Kaczmarek, M.

J. M. Hendricks, D. P. Shepherd, H. L. Offerhaus, M. Kaczmarek, R. W. Eason, and M. J. Damzen, Opt. Commun. 190, 357 (2001).
[CrossRef]

Kuzhelev, A. S.

Luo, L. G.

L. G. Luo, R. F. Peng, and P. L. Chu, Opt. Commun. 156, 275 (1998).
[CrossRef]

Nunes, L. A. O.

T. Catunda and L. A. O. Nunes, Phys. Rev. B 45, 10,087 (1992).
[CrossRef]

Offerhaus, H. L.

J. M. Hendricks, D. P. Shepherd, H. L. Offerhaus, M. Kaczmarek, R. W. Eason, and M. J. Damzen, Opt. Commun. 190, 357 (2001).
[CrossRef]

Oliveira, L. C.

L. C. Oliveira and S. C. Zilio, Appl. Phys. Lett. 65, 2121 (1994).
[CrossRef]

Payne, S. A.

Peng, R. F.

L. G. Luo, R. F. Peng, and P. L. Chu, Opt. Commun. 156, 275 (1998).
[CrossRef]

Pilla, V.

V. Pilla, P. R. Impinnisi, and T. Catunda, Appl. Phys. Lett. 70, 817 (1997).
[CrossRef]

Powell, R. C.

Reali, G. C.

A. Agnesi, G. Gabetta, and G. C. Reali, J. Appl. Phys. 71, 6207 (1992).
[CrossRef]

Said, A. A.

M. Sheik-Bahae, A. A. Said, T. Wei, D. J. Hagan, and E. W. Van Stryland, IEEE J. Quantum Electron. 26, 760 (1990).
[CrossRef]

Sheik-Bahae, M.

M. Sheik-Bahae, A. A. Said, T. Wei, D. J. Hagan, and E. W. Van Stryland, IEEE J. Quantum Electron. 26, 760 (1990).
[CrossRef]

Shepherd, D. P.

J. M. Hendricks, D. P. Shepherd, H. L. Offerhaus, M. Kaczmarek, R. W. Eason, and M. J. Damzen, Opt. Commun. 190, 357 (2001).
[CrossRef]

Sillard, P.

Skirtach, A.

S. A. Boothroyd, A. Skirtach, L. Chan, and A. Akmaloni, IEEE J. Quantum Electron. 35, 39 (1999).
[CrossRef]

Van Stryland, E. W.

M. Sheik-Bahae, A. A. Said, T. Wei, D. J. Hagan, and E. W. Van Stryland, IEEE J. Quantum Electron. 26, 760 (1990).
[CrossRef]

Wei, T.

M. Sheik-Bahae, A. A. Said, T. Wei, D. J. Hagan, and E. W. Van Stryland, IEEE J. Quantum Electron. 26, 760 (1990).
[CrossRef]

Zilio, S. C.

L. C. Oliveira and S. C. Zilio, Appl. Phys. Lett. 65, 2121 (1994).
[CrossRef]

Appl. Opt. (1)

Appl. Phys. Lett. (2)

L. C. Oliveira and S. C. Zilio, Appl. Phys. Lett. 65, 2121 (1994).
[CrossRef]

V. Pilla, P. R. Impinnisi, and T. Catunda, Appl. Phys. Lett. 70, 817 (1997).
[CrossRef]

IEEE J. Quantum Electron. (2)

M. Sheik-Bahae, A. A. Said, T. Wei, D. J. Hagan, and E. W. Van Stryland, IEEE J. Quantum Electron. 26, 760 (1990).
[CrossRef]

S. A. Boothroyd, A. Skirtach, L. Chan, and A. Akmaloni, IEEE J. Quantum Electron. 35, 39 (1999).
[CrossRef]

J. Appl. Phys. (1)

A. Agnesi, G. Gabetta, and G. C. Reali, J. Appl. Phys. 71, 6207 (1992).
[CrossRef]

J. Opt. Soc. Am. B (2)

Opt. Commun. (2)

J. M. Hendricks, D. P. Shepherd, H. L. Offerhaus, M. Kaczmarek, R. W. Eason, and M. J. Damzen, Opt. Commun. 190, 357 (2001).
[CrossRef]

L. G. Luo, R. F. Peng, and P. L. Chu, Opt. Commun. 156, 275 (1998).
[CrossRef]

Opt. Lett. (2)

Phys. Rev. B (1)

T. Catunda and L. A. O. Nunes, Phys. Rev. B 45, 10,087 (1992).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

n2 spectrum versus δ [from Eq. (4)] when s=0 for several values of A.

Fig. 2
Fig. 2

Z-scan signal of the ruby R1 line λ=694.3 nm obtained with excitation power P=14.8 mW.

Fig. 3
Fig. 3

S1=50%, S2=100%, and the normalized curve S1/S2. The dye laser P=170 mW frequency was scanned with the sample at the fixed valley position z=-0.85 z0. We used the data of (a) to calculate the n2 spectrum shown in (b).

Fig. 4
Fig. 4

Ruby n2 spectrum obtained with P=14.1 mW.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

χ=χm+Ngαg+Nexαex-a02πki+δ1+δ2+s,
χ=χm+N0αg-a02πki+δ-As1+δ2+s,
A=4π2λfL2n0Δασg.
n2=a0fL2n0kIsi+δ+A1+δ21+δ2+s2.

Metrics