Abstract

Scanning line optical tweezers are a powerful tool for the study of colloidal or biomolecular systems in the low-force regime. We present a fast, high-resolution particle position measurement scheme that extends the capabilities of these instruments into the realm of dynamic measurements. The technique is based on synchronous detection of forward-scattered laser light during a line scan. We demonstrate a position resolution of better than 50 nm for bandwidths of as much as 40 kHz for pairs of microspheres trapped in a flat line potential at center-to-center separations of 1.76 µm.

© 2002 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. B. Smith, Y. Cui, and C. Bustamante, Science 271, 795 (1996).
    [CrossRef] [PubMed]
  2. K. Svoboda and S. M. Block, Annu. Rev. Biophys. Biomol. Struct. 23, 247 (1994).
    [CrossRef]
  3. F. Gittes and C. F. Schmidt, Eur. Biophys. J. 27, 75 (1998).
    [CrossRef]
  4. J. C. Meiners and S. R. Quake, Phys. Rev. Lett. 84, 5014 (2000).
    [CrossRef] [PubMed]
  5. J. C. Crocker, J. A. Matteo, A. D. Dinsmore, and A. G. Yodh, Phys. Rev. Lett. 82, 4352 (1999).
    [CrossRef]
  6. L. P. Faucheux, L. S. Bourdieu, P. D. Kaplan, and A. J. Libchaber, Phys. Rev. Lett. 74, 1504 (1995).
    [CrossRef] [PubMed]
  7. K. Visscher, S. P. Gross, and S. M. Block, IEEE J. Sel. Top. Quantum Electron. 2, 1066 (1996).
    [CrossRef]
  8. A. Pralle, M. Prummer, E. L. Florin, E. H. K. Stelzer, and J. K. H. Hörber, Microsc. Res. Tech. 44, 378 (1999).
    [CrossRef] [PubMed]

2000 (1)

J. C. Meiners and S. R. Quake, Phys. Rev. Lett. 84, 5014 (2000).
[CrossRef] [PubMed]

1999 (2)

J. C. Crocker, J. A. Matteo, A. D. Dinsmore, and A. G. Yodh, Phys. Rev. Lett. 82, 4352 (1999).
[CrossRef]

A. Pralle, M. Prummer, E. L. Florin, E. H. K. Stelzer, and J. K. H. Hörber, Microsc. Res. Tech. 44, 378 (1999).
[CrossRef] [PubMed]

1998 (1)

F. Gittes and C. F. Schmidt, Eur. Biophys. J. 27, 75 (1998).
[CrossRef]

1996 (2)

K. Visscher, S. P. Gross, and S. M. Block, IEEE J. Sel. Top. Quantum Electron. 2, 1066 (1996).
[CrossRef]

S. B. Smith, Y. Cui, and C. Bustamante, Science 271, 795 (1996).
[CrossRef] [PubMed]

1995 (1)

L. P. Faucheux, L. S. Bourdieu, P. D. Kaplan, and A. J. Libchaber, Phys. Rev. Lett. 74, 1504 (1995).
[CrossRef] [PubMed]

1994 (1)

K. Svoboda and S. M. Block, Annu. Rev. Biophys. Biomol. Struct. 23, 247 (1994).
[CrossRef]

Block, S. M.

K. Visscher, S. P. Gross, and S. M. Block, IEEE J. Sel. Top. Quantum Electron. 2, 1066 (1996).
[CrossRef]

K. Svoboda and S. M. Block, Annu. Rev. Biophys. Biomol. Struct. 23, 247 (1994).
[CrossRef]

Bourdieu, L. S.

L. P. Faucheux, L. S. Bourdieu, P. D. Kaplan, and A. J. Libchaber, Phys. Rev. Lett. 74, 1504 (1995).
[CrossRef] [PubMed]

Bustamante, C.

S. B. Smith, Y. Cui, and C. Bustamante, Science 271, 795 (1996).
[CrossRef] [PubMed]

Crocker, J. C.

J. C. Crocker, J. A. Matteo, A. D. Dinsmore, and A. G. Yodh, Phys. Rev. Lett. 82, 4352 (1999).
[CrossRef]

Cui, Y.

S. B. Smith, Y. Cui, and C. Bustamante, Science 271, 795 (1996).
[CrossRef] [PubMed]

Dinsmore, A. D.

J. C. Crocker, J. A. Matteo, A. D. Dinsmore, and A. G. Yodh, Phys. Rev. Lett. 82, 4352 (1999).
[CrossRef]

Faucheux, L. P.

L. P. Faucheux, L. S. Bourdieu, P. D. Kaplan, and A. J. Libchaber, Phys. Rev. Lett. 74, 1504 (1995).
[CrossRef] [PubMed]

Florin, E. L.

A. Pralle, M. Prummer, E. L. Florin, E. H. K. Stelzer, and J. K. H. Hörber, Microsc. Res. Tech. 44, 378 (1999).
[CrossRef] [PubMed]

Gittes, F.

F. Gittes and C. F. Schmidt, Eur. Biophys. J. 27, 75 (1998).
[CrossRef]

Gross, S. P.

K. Visscher, S. P. Gross, and S. M. Block, IEEE J. Sel. Top. Quantum Electron. 2, 1066 (1996).
[CrossRef]

Hörber, J. K. H.

A. Pralle, M. Prummer, E. L. Florin, E. H. K. Stelzer, and J. K. H. Hörber, Microsc. Res. Tech. 44, 378 (1999).
[CrossRef] [PubMed]

Kaplan, P. D.

L. P. Faucheux, L. S. Bourdieu, P. D. Kaplan, and A. J. Libchaber, Phys. Rev. Lett. 74, 1504 (1995).
[CrossRef] [PubMed]

Libchaber, A. J.

L. P. Faucheux, L. S. Bourdieu, P. D. Kaplan, and A. J. Libchaber, Phys. Rev. Lett. 74, 1504 (1995).
[CrossRef] [PubMed]

Matteo, J. A.

J. C. Crocker, J. A. Matteo, A. D. Dinsmore, and A. G. Yodh, Phys. Rev. Lett. 82, 4352 (1999).
[CrossRef]

Meiners, J. C.

J. C. Meiners and S. R. Quake, Phys. Rev. Lett. 84, 5014 (2000).
[CrossRef] [PubMed]

Pralle, A.

A. Pralle, M. Prummer, E. L. Florin, E. H. K. Stelzer, and J. K. H. Hörber, Microsc. Res. Tech. 44, 378 (1999).
[CrossRef] [PubMed]

Prummer, M.

A. Pralle, M. Prummer, E. L. Florin, E. H. K. Stelzer, and J. K. H. Hörber, Microsc. Res. Tech. 44, 378 (1999).
[CrossRef] [PubMed]

Quake, S. R.

J. C. Meiners and S. R. Quake, Phys. Rev. Lett. 84, 5014 (2000).
[CrossRef] [PubMed]

Schmidt, C. F.

F. Gittes and C. F. Schmidt, Eur. Biophys. J. 27, 75 (1998).
[CrossRef]

Smith, S. B.

S. B. Smith, Y. Cui, and C. Bustamante, Science 271, 795 (1996).
[CrossRef] [PubMed]

Stelzer, E. H. K.

A. Pralle, M. Prummer, E. L. Florin, E. H. K. Stelzer, and J. K. H. Hörber, Microsc. Res. Tech. 44, 378 (1999).
[CrossRef] [PubMed]

Svoboda, K.

K. Svoboda and S. M. Block, Annu. Rev. Biophys. Biomol. Struct. 23, 247 (1994).
[CrossRef]

Visscher, K.

K. Visscher, S. P. Gross, and S. M. Block, IEEE J. Sel. Top. Quantum Electron. 2, 1066 (1996).
[CrossRef]

Yodh, A. G.

J. C. Crocker, J. A. Matteo, A. D. Dinsmore, and A. G. Yodh, Phys. Rev. Lett. 82, 4352 (1999).
[CrossRef]

Annu. Rev. Biophys. Biomol. Struct. (1)

K. Svoboda and S. M. Block, Annu. Rev. Biophys. Biomol. Struct. 23, 247 (1994).
[CrossRef]

Eur. Biophys. J. (1)

F. Gittes and C. F. Schmidt, Eur. Biophys. J. 27, 75 (1998).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

K. Visscher, S. P. Gross, and S. M. Block, IEEE J. Sel. Top. Quantum Electron. 2, 1066 (1996).
[CrossRef]

Microsc. Res. Tech. (1)

A. Pralle, M. Prummer, E. L. Florin, E. H. K. Stelzer, and J. K. H. Hörber, Microsc. Res. Tech. 44, 378 (1999).
[CrossRef] [PubMed]

Phys. Rev. Lett. (3)

J. C. Meiners and S. R. Quake, Phys. Rev. Lett. 84, 5014 (2000).
[CrossRef] [PubMed]

J. C. Crocker, J. A. Matteo, A. D. Dinsmore, and A. G. Yodh, Phys. Rev. Lett. 82, 4352 (1999).
[CrossRef]

L. P. Faucheux, L. S. Bourdieu, P. D. Kaplan, and A. J. Libchaber, Phys. Rev. Lett. 74, 1504 (1995).
[CrossRef] [PubMed]

Science (1)

S. B. Smith, Y. Cui, and C. Bustamante, Science 271, 795 (1996).
[CrossRef] [PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Experimental setup of the scanning line optical tweezers with forward-scattered light detection. A laser beam is deflected with an acousto-optical modulator (AOM) and focused into a sample cell, where microspheres are trapped in the resultant optical potential. The forward-scattered laser light is collected with a fast photodiode in the image plane of the condenser lens. In addition, fluorescence microscopy provides an optical image of the trapped particles.

Fig. 2
Fig. 2

Separation of the microspheres in the optical line potential as measured by video microscopy as a function of the time difference between the interference minima. (a) Data for microspheres of 0.5µm diameter at scan rates of 0.99Δ, 0.57, and 0.29μm/μs. (b) Results for larger microspheres with a diameter of 1.0 µm; inset, intensity of the forward-scattered light during a line scan through two microspheres at a center-to-center distance of 4.4 µm and a scan rate of 0.57 µm/μs. We determined the positions of the minima in the interference patterns by fitting parabolas to the bottom halves of the intensity dips. These fitted parabolas are shown as bold curves.

Fig. 3
Fig. 3

Residual deviations from a linear time–distance relationship. The differences between the measurement of the separation between the microspheres by use of the time delay between the interference minima and the linear regression from Fig. 3 and the microscopic measurement are shown for several laser scan rates and sphere sizes. Open symbols, small spheres of 0.5µm diameter; filled symbols, 1.0µm spheres. The standard deviation from the expected linear behavior is shown as the one-σ interval (solid and dashed lines, respectively).

Metrics