Abstract

Fiber couplers made with photonic crystal fibers (PCF) are reported. Two types of PCF were fabricated by means of stacking a group of silica tubes around a silica rod and drawing them. The fiber couplers were made by use of the fused biconical tapered method. With a fiber that had five hexagonally stacked layers of air holes, a 33/67 coupling ratio was obtained, and with a one-layer four-hole fiber, a 48/52 coupling ratio was obtained. The fabrication processes and the characteristics of the PCFs and the PCF couplers are presented.

© 2002 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. A. Birks, J. C. Knight, and P. St. J. Russell, Opt. Lett. 22, 961 (1997).
    [CrossRef] [PubMed]
  2. J. C. Knight, T. A. Birks, R. F. Cregan, P. St. J. Russell, and J. P. de Sandro, Electron. Lett. 34, 1347 (1998).
    [CrossRef]
  3. D. Mogilevtsev, T. A. Birks, and P. St. J. Russell, Opt. Lett. 23, 1662 (1998).
    [CrossRef]
  4. T. Hasegawa, E. Sasaoka, M. Onishi, M. Nishimura, Y. Tsuji, and M. Koshibal, in Optical Fiber Communication Conference, Vol. 54 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2001), postdeadline paper PD5.
  5. B. S. Kawasaki, K. O. Hill, and L. G. Lamont, Opt. Lett. 6, 327 (1981).
    [CrossRef] [PubMed]
  6. J. B. Eom, K. W. Park, T.-J. Eom, Y. Chung, W.-T. Han, U.-C. Paek, and B. H. Lee, postdeadline paper PDP2.05 presented at the Optoelectronics and Communications Conference (OECC’01), Sydney, Australia, July 1–5, 2001.
  7. A. K. Varshneya, Fundamentals of Inorganic Glasses (Academic, New York, 1994).
  8. Y. Dogu and D. A. Kaminski, in Proc. ASME Heat Transfer Div. 1, 89 (1997).

1998 (2)

J. C. Knight, T. A. Birks, R. F. Cregan, P. St. J. Russell, and J. P. de Sandro, Electron. Lett. 34, 1347 (1998).
[CrossRef]

D. Mogilevtsev, T. A. Birks, and P. St. J. Russell, Opt. Lett. 23, 1662 (1998).
[CrossRef]

1997 (2)

T. A. Birks, J. C. Knight, and P. St. J. Russell, Opt. Lett. 22, 961 (1997).
[CrossRef] [PubMed]

Y. Dogu and D. A. Kaminski, in Proc. ASME Heat Transfer Div. 1, 89 (1997).

1981 (1)

Birks, T. A.

Chung, Y.

J. B. Eom, K. W. Park, T.-J. Eom, Y. Chung, W.-T. Han, U.-C. Paek, and B. H. Lee, postdeadline paper PDP2.05 presented at the Optoelectronics and Communications Conference (OECC’01), Sydney, Australia, July 1–5, 2001.

Cregan, R. F.

J. C. Knight, T. A. Birks, R. F. Cregan, P. St. J. Russell, and J. P. de Sandro, Electron. Lett. 34, 1347 (1998).
[CrossRef]

de Sandro, J. P.

J. C. Knight, T. A. Birks, R. F. Cregan, P. St. J. Russell, and J. P. de Sandro, Electron. Lett. 34, 1347 (1998).
[CrossRef]

Dogu, Y.

Y. Dogu and D. A. Kaminski, in Proc. ASME Heat Transfer Div. 1, 89 (1997).

Eom, J. B.

J. B. Eom, K. W. Park, T.-J. Eom, Y. Chung, W.-T. Han, U.-C. Paek, and B. H. Lee, postdeadline paper PDP2.05 presented at the Optoelectronics and Communications Conference (OECC’01), Sydney, Australia, July 1–5, 2001.

Eom, T.-J.

J. B. Eom, K. W. Park, T.-J. Eom, Y. Chung, W.-T. Han, U.-C. Paek, and B. H. Lee, postdeadline paper PDP2.05 presented at the Optoelectronics and Communications Conference (OECC’01), Sydney, Australia, July 1–5, 2001.

Han, W.-T.

J. B. Eom, K. W. Park, T.-J. Eom, Y. Chung, W.-T. Han, U.-C. Paek, and B. H. Lee, postdeadline paper PDP2.05 presented at the Optoelectronics and Communications Conference (OECC’01), Sydney, Australia, July 1–5, 2001.

Hasegawa, T.

T. Hasegawa, E. Sasaoka, M. Onishi, M. Nishimura, Y. Tsuji, and M. Koshibal, in Optical Fiber Communication Conference, Vol. 54 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2001), postdeadline paper PD5.

Hill, K. O.

Kaminski, D. A.

Y. Dogu and D. A. Kaminski, in Proc. ASME Heat Transfer Div. 1, 89 (1997).

Kawasaki, B. S.

Knight, J. C.

J. C. Knight, T. A. Birks, R. F. Cregan, P. St. J. Russell, and J. P. de Sandro, Electron. Lett. 34, 1347 (1998).
[CrossRef]

T. A. Birks, J. C. Knight, and P. St. J. Russell, Opt. Lett. 22, 961 (1997).
[CrossRef] [PubMed]

Koshibal, M.

T. Hasegawa, E. Sasaoka, M. Onishi, M. Nishimura, Y. Tsuji, and M. Koshibal, in Optical Fiber Communication Conference, Vol. 54 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2001), postdeadline paper PD5.

Lamont, L. G.

Lee, B. H.

J. B. Eom, K. W. Park, T.-J. Eom, Y. Chung, W.-T. Han, U.-C. Paek, and B. H. Lee, postdeadline paper PDP2.05 presented at the Optoelectronics and Communications Conference (OECC’01), Sydney, Australia, July 1–5, 2001.

Mogilevtsev, D.

Nishimura, M.

T. Hasegawa, E. Sasaoka, M. Onishi, M. Nishimura, Y. Tsuji, and M. Koshibal, in Optical Fiber Communication Conference, Vol. 54 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2001), postdeadline paper PD5.

Onishi, M.

T. Hasegawa, E. Sasaoka, M. Onishi, M. Nishimura, Y. Tsuji, and M. Koshibal, in Optical Fiber Communication Conference, Vol. 54 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2001), postdeadline paper PD5.

Paek, U.-C.

J. B. Eom, K. W. Park, T.-J. Eom, Y. Chung, W.-T. Han, U.-C. Paek, and B. H. Lee, postdeadline paper PDP2.05 presented at the Optoelectronics and Communications Conference (OECC’01), Sydney, Australia, July 1–5, 2001.

Park, K. W.

J. B. Eom, K. W. Park, T.-J. Eom, Y. Chung, W.-T. Han, U.-C. Paek, and B. H. Lee, postdeadline paper PDP2.05 presented at the Optoelectronics and Communications Conference (OECC’01), Sydney, Australia, July 1–5, 2001.

Russell, P. St. J.

Sasaoka, E.

T. Hasegawa, E. Sasaoka, M. Onishi, M. Nishimura, Y. Tsuji, and M. Koshibal, in Optical Fiber Communication Conference, Vol. 54 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2001), postdeadline paper PD5.

Tsuji, Y.

T. Hasegawa, E. Sasaoka, M. Onishi, M. Nishimura, Y. Tsuji, and M. Koshibal, in Optical Fiber Communication Conference, Vol. 54 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2001), postdeadline paper PD5.

Varshneya, A. K.

A. K. Varshneya, Fundamentals of Inorganic Glasses (Academic, New York, 1994).

Electron. Lett. (1)

J. C. Knight, T. A. Birks, R. F. Cregan, P. St. J. Russell, and J. P. de Sandro, Electron. Lett. 34, 1347 (1998).
[CrossRef]

Opt. Lett. (3)

Proc. ASME Heat Transfer Div. (1)

Y. Dogu and D. A. Kaminski, in Proc. ASME Heat Transfer Div. 1, 89 (1997).

Other (3)

J. B. Eom, K. W. Park, T.-J. Eom, Y. Chung, W.-T. Han, U.-C. Paek, and B. H. Lee, postdeadline paper PDP2.05 presented at the Optoelectronics and Communications Conference (OECC’01), Sydney, Australia, July 1–5, 2001.

A. K. Varshneya, Fundamentals of Inorganic Glasses (Academic, New York, 1994).

T. Hasegawa, E. Sasaoka, M. Onishi, M. Nishimura, Y. Tsuji, and M. Koshibal, in Optical Fiber Communication Conference, Vol. 54 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2001), postdeadline paper PD5.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Scanning electron microscope images of the end faces of the fabricated PCFs: (a) five-stack PCF, (b) four-hole PCF.

Fig. 2
Fig. 2

Optical microscope image of (left) the PCFs and (right) the near-field distributions of the guided beams measured at a wavelength of 1550 nm and (a), (b) five-stack PCF and (c), (d) four-hole PCF. The fiber diameters in (a) and (c) are approximately 128 and 130 µm, respectively.

Fig. 3
Fig. 3

Relative light output intensities measured at two output ports of the coupler made with the four-hole PCF. The intensities were measured at a 1550-nm wavelength and plotted in terms of the pulling length.

Fig. 4
Fig. 4

Scanning electron microscope image of the end face of the PCF coupler, which was cleaved at a fused region. The cladding diameter of each PCF was measured to be 30 µm, and each hole had a 3.6µm diameter after fusion and elongation.

Fig. 5
Fig. 5

Optical microscope image of the side view of the PCF coupler. The width of the fused region of the coupler decreases adiabatically from right to left. Arrow, fiber region.

Metrics