Abstract

Ultrafast optical pulses shorter than 20 fs with 400-mW average power at a 110-MHz repetition rate have been generated by a Cr4+:YAG laser with only double-chirped mirrors for dispersion compensation. The corresponding pulse spectrum has a peak intensity at 1450 nm and extends from 1310 to 1500 nm full width at half-maximum (FWHM). These pulses, which are believed to be the shortest generated to date from a Cr4+:YAG laser, are only four optical cycles within the FWHM intensity width.

© 2002 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. V. Shestakov, N. I. Borodin, V. A. Zhitnyuk, A. G. Ohrimtchyuk, and V. P. Gapontsev, in Conference on Lasers and Electro-Optics, Vol. 12 of 1992 OSA Technical Digest (Optical Society of America, Washington, D.C., 1992), paper CTuI2.
  2. P. M. W. French, N. H. Rizvi, J. R. Taylor, and A. V. Shestakov, “Continuous-wave mode-locked Cr4+:YAG lasers,” Opt. Lett. 18, 39–41 (1993).
    [CrossRef] [PubMed]
  3. A. Sennaroglu, C. R. Pollock, and H. Nathel, “Continuous-wave self-mode-locked operation of a femtosecond Cr4+:YAG laser,” Opt. Lett. 19, 390–392 (1994).
    [PubMed]
  4. K. Tamura, E. P. Ippen, H. A. Haus, and L. E. Nelson, “77-fs pulse generation from a stretched-pulse additive pulse mode locked all-fiber ring lasers,” Opt. Lett. 18, 1080–1082 (1993).
    [CrossRef]
  5. Y. P. Tong, P. M. W. French, J. R. Taylor, and J. G. Fujimoto, “All-solid-state femtosecond sources in the near infrared,” Opt. Commun. 136, 235–238 (1997).
    [CrossRef]
  6. T. Tomaru and H. Petek, “Effect of third-order dispersion on the phases of solitonlike Cr4+:YAG-laser pulses characterized by the second-harmonic generation frequency-resolved optical gating method,” J. Opt. Soc. Am. B 18, 388–393 (2001).
    [CrossRef]
  7. Z. Zhang, T. Nakagawa, K. Torizuka, T. Sugaya, and K. Kobayashi, “Self-starting mode-locked Cr4+:YAG laser with a low-loss broadband semiconductor saturable-absorber mirror,” Opt. Lett. 24, 1768–1770 (1999).
    [CrossRef]
  8. B. C. Collings, J. B. Stark, S. Tsuda, W. H. Knox, J. E. Cunningham, W. Y. Jan, R. Pathak, and K. Bergman, “Saturable Bragg reflector self-starting passive mode locking of a Cr4+:YAG laser pumped with a diode-pumped Nd:YVO4 laser,” Opt. Lett. 21, 1171–1173 (1996).
    [CrossRef] [PubMed]
  9. S. Spälter, M. Böhm, M. Burk, B. Mikulla, R. Fluck, I. D. Jung, G. Zhang, U. Keller, A. Sizmann, and G. Leuchs, “Self-starting soliton-modelocked femtosecond Cr4+:YAG laser using an antiresonant Fabry–Pérot saturable absorber,” Appl. Phys. B 65, 335–338 (1997).
    [CrossRef]
  10. T. R. Schibli, T. Kremp, U. Morgner, F. X. Kärtner, R. Butendeich, J. Schwartz, H. Schweizer, F. Scholz, J. Hetzler, and M. Wegener, “Continuous-wave operation and Q-switched mode locking of Cr4+:YAG microchip lasers,” Opt. Lett. 26, 941–943 (2001).
    [CrossRef]
  11. B. C. Collings, K. Bergman, and W. H. Knox, “True fundamental solitons in a passively mode-locked short-cavity Cr4+:YAG laser,” Opt. Lett. 22, 1098–1100 (1997).
    [CrossRef] [PubMed]
  12. T. Tomaru and H. Petek, “Femtosecond Cr4+:YAG laser with an L-fold cavity operating at a 1.2-GHz repetition rate,” Opt. Lett. 25, 584–586 (2000).
    [CrossRef]
  13. R. Szipöcs, K. Ferencz, C. Spielmann, and F. Krausz, “Chirped multilayer coatings for broadband dispersion control in femtosecond lasers,” Opt. Lett. 19, 201–203 (1994).
    [CrossRef] [PubMed]
  14. F. X. Kärtner, N. Matuschek, T. Schibli, U. Keller, H. A. Haus, C. Heine, R. Morf, V. Scheuer, M. Tilsch, and T. Tschudi, “Design and fabrication of double-chirped mirrors,” Opt. Lett. 22, 831–833 (1997).
    [CrossRef] [PubMed]
  15. R. Ell, U. Morgner, F. X. Kärtner, J. G. Fujimoto, E. P. Ippen, V. Scheuer, G. Angelow, T. Tschudi, M. J. Lederer, A. Boiko, and B. Luther-Davies, “Generation of 5-fs pulses and octave-spanning spectra directly from a Ti:sapphire laser,” Opt. Lett. 26, 373–375 (2001).
    [CrossRef]
  16. D. H. Sutter, G. Steinmeyer, L. Gallmann, N. Matuschek, F. Morier-Genoud, U. Keller, V. Scheuer, G. Angelow, and T. Tschudi, “Semiconductor saturable-absorber mirror-assisted Kerr-lens mode-locked Ti:sapphire laser producing pulses in the two-cycle regime,” Opt. Lett. 24, 631–633 (1999).
    [CrossRef]
  17. C. Chudoba, J. G. Fujimoto, E. P. Ippen, H. A. Haus, U. Morgner, F. X. Kärtner, V. Scheuer, G. Angelow, and T. Tschudi, “All-solid-state Cr:fosterite laser generating 14-fs pulses at 1.3 µm,” Opt. Lett. 26, 292–294 (2001).
    [CrossRef]
  18. M. Tilsch, V. Scheuer, J. Staub, and T. Tschudi, Proc. SPIE 2253, 414 (1994).
    [CrossRef]
  19. Y. Ishida and K. Naganuma, “Characteristics of femtosecond pulses near 1.5 µm in a self-mode-locked Cr4+:YAG laser,” Opt. Lett. 19, 2003–2005 (1994).
    [CrossRef] [PubMed]
  20. K. Naganuma, K. Mogi, and H. Yamada, “Group-delay measurement using the Fourier transform of an interferometric cross correlation generated by white light,” Opt. Lett. 15, 393–395 (1990).
    [CrossRef] [PubMed]
  21. P. J. Conlon, Y. P. Tong, P. M. W. French, J. R. Taylor, and A. V. Shestakov, “Passive mode locking and dispersion measurement of a sub-100-fs Cr4+:YAG laser,” Opt. Lett. 19, 1468–1470 (1994).
    [CrossRef] [PubMed]
  22. A. Baltuska, A. Pugzlys, M. Pshenichnikov, D. Wiersma, B. Hoenders, and H. Ferwerda, presented at the Ultrafast Optics Meeting, Ascona, Sweden, July 11–16, 1999.

2001

2000

1999

1997

B. C. Collings, K. Bergman, and W. H. Knox, “True fundamental solitons in a passively mode-locked short-cavity Cr4+:YAG laser,” Opt. Lett. 22, 1098–1100 (1997).
[CrossRef] [PubMed]

Y. P. Tong, P. M. W. French, J. R. Taylor, and J. G. Fujimoto, “All-solid-state femtosecond sources in the near infrared,” Opt. Commun. 136, 235–238 (1997).
[CrossRef]

S. Spälter, M. Böhm, M. Burk, B. Mikulla, R. Fluck, I. D. Jung, G. Zhang, U. Keller, A. Sizmann, and G. Leuchs, “Self-starting soliton-modelocked femtosecond Cr4+:YAG laser using an antiresonant Fabry–Pérot saturable absorber,” Appl. Phys. B 65, 335–338 (1997).
[CrossRef]

F. X. Kärtner, N. Matuschek, T. Schibli, U. Keller, H. A. Haus, C. Heine, R. Morf, V. Scheuer, M. Tilsch, and T. Tschudi, “Design and fabrication of double-chirped mirrors,” Opt. Lett. 22, 831–833 (1997).
[CrossRef] [PubMed]

1996

1994

1993

1990

Angelow, G.

Baltuska, A.

A. Baltuska, A. Pugzlys, M. Pshenichnikov, D. Wiersma, B. Hoenders, and H. Ferwerda, presented at the Ultrafast Optics Meeting, Ascona, Sweden, July 11–16, 1999.

Bergman, K.

Böhm, M.

S. Spälter, M. Böhm, M. Burk, B. Mikulla, R. Fluck, I. D. Jung, G. Zhang, U. Keller, A. Sizmann, and G. Leuchs, “Self-starting soliton-modelocked femtosecond Cr4+:YAG laser using an antiresonant Fabry–Pérot saturable absorber,” Appl. Phys. B 65, 335–338 (1997).
[CrossRef]

Boiko, A.

Borodin, N. I.

A. V. Shestakov, N. I. Borodin, V. A. Zhitnyuk, A. G. Ohrimtchyuk, and V. P. Gapontsev, in Conference on Lasers and Electro-Optics, Vol. 12 of 1992 OSA Technical Digest (Optical Society of America, Washington, D.C., 1992), paper CTuI2.

Burk, M.

S. Spälter, M. Böhm, M. Burk, B. Mikulla, R. Fluck, I. D. Jung, G. Zhang, U. Keller, A. Sizmann, and G. Leuchs, “Self-starting soliton-modelocked femtosecond Cr4+:YAG laser using an antiresonant Fabry–Pérot saturable absorber,” Appl. Phys. B 65, 335–338 (1997).
[CrossRef]

Butendeich, R.

Chudoba, C.

Collings, B. C.

Conlon, P. J.

Cunningham, J. E.

Ell, R.

Ferencz, K.

Ferwerda, H.

A. Baltuska, A. Pugzlys, M. Pshenichnikov, D. Wiersma, B. Hoenders, and H. Ferwerda, presented at the Ultrafast Optics Meeting, Ascona, Sweden, July 11–16, 1999.

Fluck, R.

S. Spälter, M. Böhm, M. Burk, B. Mikulla, R. Fluck, I. D. Jung, G. Zhang, U. Keller, A. Sizmann, and G. Leuchs, “Self-starting soliton-modelocked femtosecond Cr4+:YAG laser using an antiresonant Fabry–Pérot saturable absorber,” Appl. Phys. B 65, 335–338 (1997).
[CrossRef]

French, P. M. W.

Fujimoto, J. G.

Gallmann, L.

Gapontsev, V. P.

A. V. Shestakov, N. I. Borodin, V. A. Zhitnyuk, A. G. Ohrimtchyuk, and V. P. Gapontsev, in Conference on Lasers and Electro-Optics, Vol. 12 of 1992 OSA Technical Digest (Optical Society of America, Washington, D.C., 1992), paper CTuI2.

Haus, H. A.

Heine, C.

Hetzler, J.

Hoenders, B.

A. Baltuska, A. Pugzlys, M. Pshenichnikov, D. Wiersma, B. Hoenders, and H. Ferwerda, presented at the Ultrafast Optics Meeting, Ascona, Sweden, July 11–16, 1999.

Ippen, E. P.

Ishida, Y.

Jan, W. Y.

Jung, I. D.

S. Spälter, M. Böhm, M. Burk, B. Mikulla, R. Fluck, I. D. Jung, G. Zhang, U. Keller, A. Sizmann, and G. Leuchs, “Self-starting soliton-modelocked femtosecond Cr4+:YAG laser using an antiresonant Fabry–Pérot saturable absorber,” Appl. Phys. B 65, 335–338 (1997).
[CrossRef]

Kärtner, F. X.

Keller, U.

Knox, W. H.

Kobayashi, K.

Krausz, F.

Kremp, T.

Lederer, M. J.

Leuchs, G.

S. Spälter, M. Böhm, M. Burk, B. Mikulla, R. Fluck, I. D. Jung, G. Zhang, U. Keller, A. Sizmann, and G. Leuchs, “Self-starting soliton-modelocked femtosecond Cr4+:YAG laser using an antiresonant Fabry–Pérot saturable absorber,” Appl. Phys. B 65, 335–338 (1997).
[CrossRef]

Luther-Davies, B.

Matuschek, N.

Mikulla, B.

S. Spälter, M. Böhm, M. Burk, B. Mikulla, R. Fluck, I. D. Jung, G. Zhang, U. Keller, A. Sizmann, and G. Leuchs, “Self-starting soliton-modelocked femtosecond Cr4+:YAG laser using an antiresonant Fabry–Pérot saturable absorber,” Appl. Phys. B 65, 335–338 (1997).
[CrossRef]

Mogi, K.

Morf, R.

Morgner, U.

Morier-Genoud, F.

Naganuma, K.

Nakagawa, T.

Nathel, H.

Nelson, L. E.

Ohrimtchyuk, A. G.

A. V. Shestakov, N. I. Borodin, V. A. Zhitnyuk, A. G. Ohrimtchyuk, and V. P. Gapontsev, in Conference on Lasers and Electro-Optics, Vol. 12 of 1992 OSA Technical Digest (Optical Society of America, Washington, D.C., 1992), paper CTuI2.

Pathak, R.

Petek, H.

Pollock, C. R.

Pshenichnikov, M.

A. Baltuska, A. Pugzlys, M. Pshenichnikov, D. Wiersma, B. Hoenders, and H. Ferwerda, presented at the Ultrafast Optics Meeting, Ascona, Sweden, July 11–16, 1999.

Pugzlys, A.

A. Baltuska, A. Pugzlys, M. Pshenichnikov, D. Wiersma, B. Hoenders, and H. Ferwerda, presented at the Ultrafast Optics Meeting, Ascona, Sweden, July 11–16, 1999.

Rizvi, N. H.

Scheuer, V.

Schibli, T.

Schibli, T. R.

Scholz, F.

Schwartz, J.

Schweizer, H.

Sennaroglu, A.

Shestakov, A. V.

Sizmann, A.

S. Spälter, M. Böhm, M. Burk, B. Mikulla, R. Fluck, I. D. Jung, G. Zhang, U. Keller, A. Sizmann, and G. Leuchs, “Self-starting soliton-modelocked femtosecond Cr4+:YAG laser using an antiresonant Fabry–Pérot saturable absorber,” Appl. Phys. B 65, 335–338 (1997).
[CrossRef]

Spälter, S.

S. Spälter, M. Böhm, M. Burk, B. Mikulla, R. Fluck, I. D. Jung, G. Zhang, U. Keller, A. Sizmann, and G. Leuchs, “Self-starting soliton-modelocked femtosecond Cr4+:YAG laser using an antiresonant Fabry–Pérot saturable absorber,” Appl. Phys. B 65, 335–338 (1997).
[CrossRef]

Spielmann, C.

Stark, J. B.

Staub, J.

M. Tilsch, V. Scheuer, J. Staub, and T. Tschudi, Proc. SPIE 2253, 414 (1994).
[CrossRef]

Steinmeyer, G.

Sugaya, T.

Sutter, D. H.

Szipöcs, R.

Tamura, K.

Taylor, J. R.

Tilsch, M.

Tomaru, T.

Tong, Y. P.

Y. P. Tong, P. M. W. French, J. R. Taylor, and J. G. Fujimoto, “All-solid-state femtosecond sources in the near infrared,” Opt. Commun. 136, 235–238 (1997).
[CrossRef]

P. J. Conlon, Y. P. Tong, P. M. W. French, J. R. Taylor, and A. V. Shestakov, “Passive mode locking and dispersion measurement of a sub-100-fs Cr4+:YAG laser,” Opt. Lett. 19, 1468–1470 (1994).
[CrossRef] [PubMed]

Torizuka, K.

Tschudi, T.

Tsuda, S.

Wegener, M.

Wiersma, D.

A. Baltuska, A. Pugzlys, M. Pshenichnikov, D. Wiersma, B. Hoenders, and H. Ferwerda, presented at the Ultrafast Optics Meeting, Ascona, Sweden, July 11–16, 1999.

Yamada, H.

Zhang, G.

S. Spälter, M. Böhm, M. Burk, B. Mikulla, R. Fluck, I. D. Jung, G. Zhang, U. Keller, A. Sizmann, and G. Leuchs, “Self-starting soliton-modelocked femtosecond Cr4+:YAG laser using an antiresonant Fabry–Pérot saturable absorber,” Appl. Phys. B 65, 335–338 (1997).
[CrossRef]

Zhang, Z.

Zhitnyuk, V. A.

A. V. Shestakov, N. I. Borodin, V. A. Zhitnyuk, A. G. Ohrimtchyuk, and V. P. Gapontsev, in Conference on Lasers and Electro-Optics, Vol. 12 of 1992 OSA Technical Digest (Optical Society of America, Washington, D.C., 1992), paper CTuI2.

Appl. Phys. B

S. Spälter, M. Böhm, M. Burk, B. Mikulla, R. Fluck, I. D. Jung, G. Zhang, U. Keller, A. Sizmann, and G. Leuchs, “Self-starting soliton-modelocked femtosecond Cr4+:YAG laser using an antiresonant Fabry–Pérot saturable absorber,” Appl. Phys. B 65, 335–338 (1997).
[CrossRef]

J. Opt. Soc. Am. B

Opt. Commun.

Y. P. Tong, P. M. W. French, J. R. Taylor, and J. G. Fujimoto, “All-solid-state femtosecond sources in the near infrared,” Opt. Commun. 136, 235–238 (1997).
[CrossRef]

Opt. Lett.

P. M. W. French, N. H. Rizvi, J. R. Taylor, and A. V. Shestakov, “Continuous-wave mode-locked Cr4+:YAG lasers,” Opt. Lett. 18, 39–41 (1993).
[CrossRef] [PubMed]

A. Sennaroglu, C. R. Pollock, and H. Nathel, “Continuous-wave self-mode-locked operation of a femtosecond Cr4+:YAG laser,” Opt. Lett. 19, 390–392 (1994).
[PubMed]

K. Tamura, E. P. Ippen, H. A. Haus, and L. E. Nelson, “77-fs pulse generation from a stretched-pulse additive pulse mode locked all-fiber ring lasers,” Opt. Lett. 18, 1080–1082 (1993).
[CrossRef]

Y. Ishida and K. Naganuma, “Characteristics of femtosecond pulses near 1.5 µm in a self-mode-locked Cr4+:YAG laser,” Opt. Lett. 19, 2003–2005 (1994).
[CrossRef] [PubMed]

K. Naganuma, K. Mogi, and H. Yamada, “Group-delay measurement using the Fourier transform of an interferometric cross correlation generated by white light,” Opt. Lett. 15, 393–395 (1990).
[CrossRef] [PubMed]

P. J. Conlon, Y. P. Tong, P. M. W. French, J. R. Taylor, and A. V. Shestakov, “Passive mode locking and dispersion measurement of a sub-100-fs Cr4+:YAG laser,” Opt. Lett. 19, 1468–1470 (1994).
[CrossRef] [PubMed]

T. R. Schibli, T. Kremp, U. Morgner, F. X. Kärtner, R. Butendeich, J. Schwartz, H. Schweizer, F. Scholz, J. Hetzler, and M. Wegener, “Continuous-wave operation and Q-switched mode locking of Cr4+:YAG microchip lasers,” Opt. Lett. 26, 941–943 (2001).
[CrossRef]

B. C. Collings, K. Bergman, and W. H. Knox, “True fundamental solitons in a passively mode-locked short-cavity Cr4+:YAG laser,” Opt. Lett. 22, 1098–1100 (1997).
[CrossRef] [PubMed]

T. Tomaru and H. Petek, “Femtosecond Cr4+:YAG laser with an L-fold cavity operating at a 1.2-GHz repetition rate,” Opt. Lett. 25, 584–586 (2000).
[CrossRef]

R. Szipöcs, K. Ferencz, C. Spielmann, and F. Krausz, “Chirped multilayer coatings for broadband dispersion control in femtosecond lasers,” Opt. Lett. 19, 201–203 (1994).
[CrossRef] [PubMed]

F. X. Kärtner, N. Matuschek, T. Schibli, U. Keller, H. A. Haus, C. Heine, R. Morf, V. Scheuer, M. Tilsch, and T. Tschudi, “Design and fabrication of double-chirped mirrors,” Opt. Lett. 22, 831–833 (1997).
[CrossRef] [PubMed]

R. Ell, U. Morgner, F. X. Kärtner, J. G. Fujimoto, E. P. Ippen, V. Scheuer, G. Angelow, T. Tschudi, M. J. Lederer, A. Boiko, and B. Luther-Davies, “Generation of 5-fs pulses and octave-spanning spectra directly from a Ti:sapphire laser,” Opt. Lett. 26, 373–375 (2001).
[CrossRef]

D. H. Sutter, G. Steinmeyer, L. Gallmann, N. Matuschek, F. Morier-Genoud, U. Keller, V. Scheuer, G. Angelow, and T. Tschudi, “Semiconductor saturable-absorber mirror-assisted Kerr-lens mode-locked Ti:sapphire laser producing pulses in the two-cycle regime,” Opt. Lett. 24, 631–633 (1999).
[CrossRef]

C. Chudoba, J. G. Fujimoto, E. P. Ippen, H. A. Haus, U. Morgner, F. X. Kärtner, V. Scheuer, G. Angelow, and T. Tschudi, “All-solid-state Cr:fosterite laser generating 14-fs pulses at 1.3 µm,” Opt. Lett. 26, 292–294 (2001).
[CrossRef]

Z. Zhang, T. Nakagawa, K. Torizuka, T. Sugaya, and K. Kobayashi, “Self-starting mode-locked Cr4+:YAG laser with a low-loss broadband semiconductor saturable-absorber mirror,” Opt. Lett. 24, 1768–1770 (1999).
[CrossRef]

B. C. Collings, J. B. Stark, S. Tsuda, W. H. Knox, J. E. Cunningham, W. Y. Jan, R. Pathak, and K. Bergman, “Saturable Bragg reflector self-starting passive mode locking of a Cr4+:YAG laser pumped with a diode-pumped Nd:YVO4 laser,” Opt. Lett. 21, 1171–1173 (1996).
[CrossRef] [PubMed]

Proc. SPIE

M. Tilsch, V. Scheuer, J. Staub, and T. Tschudi, Proc. SPIE 2253, 414 (1994).
[CrossRef]

Other

A. Baltuska, A. Pugzlys, M. Pshenichnikov, D. Wiersma, B. Hoenders, and H. Ferwerda, presented at the Ultrafast Optics Meeting, Ascona, Sweden, July 11–16, 1999.

A. V. Shestakov, N. I. Borodin, V. A. Zhitnyuk, A. G. Ohrimtchyuk, and V. P. Gapontsev, in Conference on Lasers and Electro-Optics, Vol. 12 of 1992 OSA Technical Digest (Optical Society of America, Washington, D.C., 1992), paper CTuI2.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Schematic of the Cr4+:YAG laser cavity: Mirrors M1–M3 are DCMs, M4 is a quarter-wave-stack high reflector, and OC is an output coupler.

Fig. 2
Fig. 2

GDD of two passes through a 2-cm Cr4+:YAG crystal, and a single DCM, and the sum of all optical elements in the laser cavity. The net cavity GDD curve includes six reflections from DCMs, a single unchirped quarter-wave-stack high reflector, and an output coupler.

Fig. 3
Fig. 3

Optical power spectrum of a Cr4+:YAG pulse. The darker curve corresponds to a linear scale (left-hand axis) and the lighter curve corresponds to a logarithmic scale (right-hand axis). The FWHM is 190 nm, with a peak at 1450 nm.

Fig. 4
Fig. 4

Measured autocorrelation function from an interferometric two-photon absorption autocorrelator (IAC) and fit by a pulse-retrieval algorithm. A pulse width of 19.5 fs is calculated by the pulse-retrieval algorithm, 18.3 fs by assumption of sech-shaped pulses, and 17.0 fs by assumption of Gaussian-shaped pulses.

Metrics