Abstract

Low-noise operation of a 9-GHz hybridly mode-locked laser diode is demonstrated. The integrated timing jitter was 47 fs (10 Hz to 10 MHz) and 86 fs (10 Hz to 4.5 GHz), with a pulse width of 6.7 ps. The noise performance as a function of filter bandwidth and oscillator noise is also addressed.

© 2002 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. W. Juodawlkis, J. C. Twichell, G. E. Betts, J. J. Hargreaves, R. D. Younger, F. J. O’Donnell, K. G. Ray, and R. C. Williamson, “Optically sampled analog-to-digital converters,” IEEE Trans. Microwave Theory Tech. 49, 1840–1853 (2001).
  2. H. Yokoyama, “Highly stabilized mode-locked semiconductor diode lasers,” Rev. Laser Eng. 27, 750–755 (1999).
  3. D. von der Linde, “Characterization of noise in continously operating mode-locked lasers,” Appl. Phys. B 39, 201–217 (1986).
  4. D. J. Derickson, A. Mar, and J. E. Bowers, “Residual and absolute timing jitter in actively mode-locked semiconductor lasers,” Electron. Lett. 26, 2026–2028 (1990).
  5. X.-L. Wang and H. Yokoyama, “Synchronized harmonic frequency mode-locking with laser diodes through optical pulse train injection,” IEEE Photon. Technol. Lett. 8, 617–619 (1996).
  6. L. A. Jiang, M. E. Grein, H. A. Haus, and E. P. Ippen, “Noise of mode-locked semiconductor lasers,” IEEE J. Sel. Top. Quantum Electron. 7, 159–167 (2001).
  7. J. P. Gordon and H. A. Haus, “Random walk of coherently amplified solitons in optical fiber transmission,” Opt. Lett. 11, 665–667 (1986).
    [PubMed]
  8. C. M. DePriest, P. J. Delfyett, J. H. Abeles, and A. Braun, “Ultrahigh-stability photonic sampling streams from an actively-modelocked semiconductor diode ring laser,” in Conference on Lasers and Electro-Optics, Vol. 56 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2001), pp. 89–90.
  9. T. R. Clark, T. F. Carruthers, P. J. Matthews, and I. N. Duling, “Phase noise measurements of ultrastable 10 GHz harmonically modelocked fibre laser,” Electron. Lett. 35, 720–721 (1999).
  10. W. Ng, R. Stephens, D. Persechini, and K. V. Reddy, “Ultra-low jitter modelocking of Er-fibre laser at 10 GHz and its application in photonic sampling for analogue-to-digital conversion,” Electron. Lett. 37, 113–115 (2001).
  11. M. E. Grein, H. A. Haus, L. A. Jiang, and E. P. Ippen, “Action on pulse position and momentum using dispersion and phase modulation,” Opt. Express 8, 664–669 (2001), http://www.opticsexpress.org .
    [CrossRef] [PubMed]
  12. A. E. Siegman, Lasers (University Science, Mill Valley, Calif., 1986).
  13. M. E. Grein, H. A. Haus, E. P. Ippen, and Y. Chen, “The quantum limit of timing jitter in actively mode-locked soliton fiber lasers,” in Conference on Lasers and Electro-Optics, Vol. 56 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2001), pp. 243–244.

2001 (4)

P. W. Juodawlkis, J. C. Twichell, G. E. Betts, J. J. Hargreaves, R. D. Younger, F. J. O’Donnell, K. G. Ray, and R. C. Williamson, “Optically sampled analog-to-digital converters,” IEEE Trans. Microwave Theory Tech. 49, 1840–1853 (2001).

L. A. Jiang, M. E. Grein, H. A. Haus, and E. P. Ippen, “Noise of mode-locked semiconductor lasers,” IEEE J. Sel. Top. Quantum Electron. 7, 159–167 (2001).

W. Ng, R. Stephens, D. Persechini, and K. V. Reddy, “Ultra-low jitter modelocking of Er-fibre laser at 10 GHz and its application in photonic sampling for analogue-to-digital conversion,” Electron. Lett. 37, 113–115 (2001).

M. E. Grein, H. A. Haus, L. A. Jiang, and E. P. Ippen, “Action on pulse position and momentum using dispersion and phase modulation,” Opt. Express 8, 664–669 (2001), http://www.opticsexpress.org .
[CrossRef] [PubMed]

1999 (2)

T. R. Clark, T. F. Carruthers, P. J. Matthews, and I. N. Duling, “Phase noise measurements of ultrastable 10 GHz harmonically modelocked fibre laser,” Electron. Lett. 35, 720–721 (1999).

H. Yokoyama, “Highly stabilized mode-locked semiconductor diode lasers,” Rev. Laser Eng. 27, 750–755 (1999).

1996 (1)

X.-L. Wang and H. Yokoyama, “Synchronized harmonic frequency mode-locking with laser diodes through optical pulse train injection,” IEEE Photon. Technol. Lett. 8, 617–619 (1996).

1990 (1)

D. J. Derickson, A. Mar, and J. E. Bowers, “Residual and absolute timing jitter in actively mode-locked semiconductor lasers,” Electron. Lett. 26, 2026–2028 (1990).

1986 (2)

D. von der Linde, “Characterization of noise in continously operating mode-locked lasers,” Appl. Phys. B 39, 201–217 (1986).

J. P. Gordon and H. A. Haus, “Random walk of coherently amplified solitons in optical fiber transmission,” Opt. Lett. 11, 665–667 (1986).
[PubMed]

Abeles, J. H.

C. M. DePriest, P. J. Delfyett, J. H. Abeles, and A. Braun, “Ultrahigh-stability photonic sampling streams from an actively-modelocked semiconductor diode ring laser,” in Conference on Lasers and Electro-Optics, Vol. 56 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2001), pp. 89–90.

Betts, G. E.

P. W. Juodawlkis, J. C. Twichell, G. E. Betts, J. J. Hargreaves, R. D. Younger, F. J. O’Donnell, K. G. Ray, and R. C. Williamson, “Optically sampled analog-to-digital converters,” IEEE Trans. Microwave Theory Tech. 49, 1840–1853 (2001).

Bowers, J. E.

D. J. Derickson, A. Mar, and J. E. Bowers, “Residual and absolute timing jitter in actively mode-locked semiconductor lasers,” Electron. Lett. 26, 2026–2028 (1990).

Braun, A.

C. M. DePriest, P. J. Delfyett, J. H. Abeles, and A. Braun, “Ultrahigh-stability photonic sampling streams from an actively-modelocked semiconductor diode ring laser,” in Conference on Lasers and Electro-Optics, Vol. 56 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2001), pp. 89–90.

Carruthers, T. F.

T. R. Clark, T. F. Carruthers, P. J. Matthews, and I. N. Duling, “Phase noise measurements of ultrastable 10 GHz harmonically modelocked fibre laser,” Electron. Lett. 35, 720–721 (1999).

Chen, Y.

M. E. Grein, H. A. Haus, E. P. Ippen, and Y. Chen, “The quantum limit of timing jitter in actively mode-locked soliton fiber lasers,” in Conference on Lasers and Electro-Optics, Vol. 56 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2001), pp. 243–244.

Clark, T. R.

T. R. Clark, T. F. Carruthers, P. J. Matthews, and I. N. Duling, “Phase noise measurements of ultrastable 10 GHz harmonically modelocked fibre laser,” Electron. Lett. 35, 720–721 (1999).

Delfyett, P. J.

C. M. DePriest, P. J. Delfyett, J. H. Abeles, and A. Braun, “Ultrahigh-stability photonic sampling streams from an actively-modelocked semiconductor diode ring laser,” in Conference on Lasers and Electro-Optics, Vol. 56 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2001), pp. 89–90.

DePriest, C. M.

C. M. DePriest, P. J. Delfyett, J. H. Abeles, and A. Braun, “Ultrahigh-stability photonic sampling streams from an actively-modelocked semiconductor diode ring laser,” in Conference on Lasers and Electro-Optics, Vol. 56 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2001), pp. 89–90.

Derickson, D. J.

D. J. Derickson, A. Mar, and J. E. Bowers, “Residual and absolute timing jitter in actively mode-locked semiconductor lasers,” Electron. Lett. 26, 2026–2028 (1990).

Duling, I. N.

T. R. Clark, T. F. Carruthers, P. J. Matthews, and I. N. Duling, “Phase noise measurements of ultrastable 10 GHz harmonically modelocked fibre laser,” Electron. Lett. 35, 720–721 (1999).

Gordon, J. P.

Grein, M. E.

M. E. Grein, H. A. Haus, L. A. Jiang, and E. P. Ippen, “Action on pulse position and momentum using dispersion and phase modulation,” Opt. Express 8, 664–669 (2001), http://www.opticsexpress.org .
[CrossRef] [PubMed]

L. A. Jiang, M. E. Grein, H. A. Haus, and E. P. Ippen, “Noise of mode-locked semiconductor lasers,” IEEE J. Sel. Top. Quantum Electron. 7, 159–167 (2001).

M. E. Grein, H. A. Haus, E. P. Ippen, and Y. Chen, “The quantum limit of timing jitter in actively mode-locked soliton fiber lasers,” in Conference on Lasers and Electro-Optics, Vol. 56 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2001), pp. 243–244.

Hargreaves, J. J.

P. W. Juodawlkis, J. C. Twichell, G. E. Betts, J. J. Hargreaves, R. D. Younger, F. J. O’Donnell, K. G. Ray, and R. C. Williamson, “Optically sampled analog-to-digital converters,” IEEE Trans. Microwave Theory Tech. 49, 1840–1853 (2001).

Haus, H. A.

L. A. Jiang, M. E. Grein, H. A. Haus, and E. P. Ippen, “Noise of mode-locked semiconductor lasers,” IEEE J. Sel. Top. Quantum Electron. 7, 159–167 (2001).

M. E. Grein, H. A. Haus, L. A. Jiang, and E. P. Ippen, “Action on pulse position and momentum using dispersion and phase modulation,” Opt. Express 8, 664–669 (2001), http://www.opticsexpress.org .
[CrossRef] [PubMed]

J. P. Gordon and H. A. Haus, “Random walk of coherently amplified solitons in optical fiber transmission,” Opt. Lett. 11, 665–667 (1986).
[PubMed]

M. E. Grein, H. A. Haus, E. P. Ippen, and Y. Chen, “The quantum limit of timing jitter in actively mode-locked soliton fiber lasers,” in Conference on Lasers and Electro-Optics, Vol. 56 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2001), pp. 243–244.

Ippen, E. P.

L. A. Jiang, M. E. Grein, H. A. Haus, and E. P. Ippen, “Noise of mode-locked semiconductor lasers,” IEEE J. Sel. Top. Quantum Electron. 7, 159–167 (2001).

M. E. Grein, H. A. Haus, L. A. Jiang, and E. P. Ippen, “Action on pulse position and momentum using dispersion and phase modulation,” Opt. Express 8, 664–669 (2001), http://www.opticsexpress.org .
[CrossRef] [PubMed]

M. E. Grein, H. A. Haus, E. P. Ippen, and Y. Chen, “The quantum limit of timing jitter in actively mode-locked soliton fiber lasers,” in Conference on Lasers and Electro-Optics, Vol. 56 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2001), pp. 243–244.

Jiang, L. A.

L. A. Jiang, M. E. Grein, H. A. Haus, and E. P. Ippen, “Noise of mode-locked semiconductor lasers,” IEEE J. Sel. Top. Quantum Electron. 7, 159–167 (2001).

M. E. Grein, H. A. Haus, L. A. Jiang, and E. P. Ippen, “Action on pulse position and momentum using dispersion and phase modulation,” Opt. Express 8, 664–669 (2001), http://www.opticsexpress.org .
[CrossRef] [PubMed]

Juodawlkis, P. W.

P. W. Juodawlkis, J. C. Twichell, G. E. Betts, J. J. Hargreaves, R. D. Younger, F. J. O’Donnell, K. G. Ray, and R. C. Williamson, “Optically sampled analog-to-digital converters,” IEEE Trans. Microwave Theory Tech. 49, 1840–1853 (2001).

Mar, A.

D. J. Derickson, A. Mar, and J. E. Bowers, “Residual and absolute timing jitter in actively mode-locked semiconductor lasers,” Electron. Lett. 26, 2026–2028 (1990).

Matthews, P. J.

T. R. Clark, T. F. Carruthers, P. J. Matthews, and I. N. Duling, “Phase noise measurements of ultrastable 10 GHz harmonically modelocked fibre laser,” Electron. Lett. 35, 720–721 (1999).

Ng, W.

W. Ng, R. Stephens, D. Persechini, and K. V. Reddy, “Ultra-low jitter modelocking of Er-fibre laser at 10 GHz and its application in photonic sampling for analogue-to-digital conversion,” Electron. Lett. 37, 113–115 (2001).

O’Donnell, F. J.

P. W. Juodawlkis, J. C. Twichell, G. E. Betts, J. J. Hargreaves, R. D. Younger, F. J. O’Donnell, K. G. Ray, and R. C. Williamson, “Optically sampled analog-to-digital converters,” IEEE Trans. Microwave Theory Tech. 49, 1840–1853 (2001).

Persechini, D.

W. Ng, R. Stephens, D. Persechini, and K. V. Reddy, “Ultra-low jitter modelocking of Er-fibre laser at 10 GHz and its application in photonic sampling for analogue-to-digital conversion,” Electron. Lett. 37, 113–115 (2001).

Ray, K. G.

P. W. Juodawlkis, J. C. Twichell, G. E. Betts, J. J. Hargreaves, R. D. Younger, F. J. O’Donnell, K. G. Ray, and R. C. Williamson, “Optically sampled analog-to-digital converters,” IEEE Trans. Microwave Theory Tech. 49, 1840–1853 (2001).

Reddy, K. V.

W. Ng, R. Stephens, D. Persechini, and K. V. Reddy, “Ultra-low jitter modelocking of Er-fibre laser at 10 GHz and its application in photonic sampling for analogue-to-digital conversion,” Electron. Lett. 37, 113–115 (2001).

Siegman, A. E.

A. E. Siegman, Lasers (University Science, Mill Valley, Calif., 1986).

Stephens, R.

W. Ng, R. Stephens, D. Persechini, and K. V. Reddy, “Ultra-low jitter modelocking of Er-fibre laser at 10 GHz and its application in photonic sampling for analogue-to-digital conversion,” Electron. Lett. 37, 113–115 (2001).

Twichell, J. C.

P. W. Juodawlkis, J. C. Twichell, G. E. Betts, J. J. Hargreaves, R. D. Younger, F. J. O’Donnell, K. G. Ray, and R. C. Williamson, “Optically sampled analog-to-digital converters,” IEEE Trans. Microwave Theory Tech. 49, 1840–1853 (2001).

von der Linde, D.

D. von der Linde, “Characterization of noise in continously operating mode-locked lasers,” Appl. Phys. B 39, 201–217 (1986).

Wang, X.-L.

X.-L. Wang and H. Yokoyama, “Synchronized harmonic frequency mode-locking with laser diodes through optical pulse train injection,” IEEE Photon. Technol. Lett. 8, 617–619 (1996).

Williamson, R. C.

P. W. Juodawlkis, J. C. Twichell, G. E. Betts, J. J. Hargreaves, R. D. Younger, F. J. O’Donnell, K. G. Ray, and R. C. Williamson, “Optically sampled analog-to-digital converters,” IEEE Trans. Microwave Theory Tech. 49, 1840–1853 (2001).

Yokoyama, H.

H. Yokoyama, “Highly stabilized mode-locked semiconductor diode lasers,” Rev. Laser Eng. 27, 750–755 (1999).

X.-L. Wang and H. Yokoyama, “Synchronized harmonic frequency mode-locking with laser diodes through optical pulse train injection,” IEEE Photon. Technol. Lett. 8, 617–619 (1996).

Younger, R. D.

P. W. Juodawlkis, J. C. Twichell, G. E. Betts, J. J. Hargreaves, R. D. Younger, F. J. O’Donnell, K. G. Ray, and R. C. Williamson, “Optically sampled analog-to-digital converters,” IEEE Trans. Microwave Theory Tech. 49, 1840–1853 (2001).

Appl. Phys. B (1)

D. von der Linde, “Characterization of noise in continously operating mode-locked lasers,” Appl. Phys. B 39, 201–217 (1986).

Electron. Lett. (3)

D. J. Derickson, A. Mar, and J. E. Bowers, “Residual and absolute timing jitter in actively mode-locked semiconductor lasers,” Electron. Lett. 26, 2026–2028 (1990).

T. R. Clark, T. F. Carruthers, P. J. Matthews, and I. N. Duling, “Phase noise measurements of ultrastable 10 GHz harmonically modelocked fibre laser,” Electron. Lett. 35, 720–721 (1999).

W. Ng, R. Stephens, D. Persechini, and K. V. Reddy, “Ultra-low jitter modelocking of Er-fibre laser at 10 GHz and its application in photonic sampling for analogue-to-digital conversion,” Electron. Lett. 37, 113–115 (2001).

IEEE J. Sel. Top. Quantum Electron. (1)

L. A. Jiang, M. E. Grein, H. A. Haus, and E. P. Ippen, “Noise of mode-locked semiconductor lasers,” IEEE J. Sel. Top. Quantum Electron. 7, 159–167 (2001).

IEEE Photon. Technol. Lett. (1)

X.-L. Wang and H. Yokoyama, “Synchronized harmonic frequency mode-locking with laser diodes through optical pulse train injection,” IEEE Photon. Technol. Lett. 8, 617–619 (1996).

IEEE Trans. Microwave Theory Tech. (1)

P. W. Juodawlkis, J. C. Twichell, G. E. Betts, J. J. Hargreaves, R. D. Younger, F. J. O’Donnell, K. G. Ray, and R. C. Williamson, “Optically sampled analog-to-digital converters,” IEEE Trans. Microwave Theory Tech. 49, 1840–1853 (2001).

Opt. Express (1)

Opt. Lett. (1)

Rev. Laser Eng. (1)

H. Yokoyama, “Highly stabilized mode-locked semiconductor diode lasers,” Rev. Laser Eng. 27, 750–755 (1999).

Other (3)

A. E. Siegman, Lasers (University Science, Mill Valley, Calif., 1986).

M. E. Grein, H. A. Haus, E. P. Ippen, and Y. Chen, “The quantum limit of timing jitter in actively mode-locked soliton fiber lasers,” in Conference on Lasers and Electro-Optics, Vol. 56 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2001), pp. 243–244.

C. M. DePriest, P. J. Delfyett, J. H. Abeles, and A. Braun, “Ultrahigh-stability photonic sampling streams from an actively-modelocked semiconductor diode ring laser,” in Conference on Lasers and Electro-Optics, Vol. 56 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2001), pp. 89–90.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Hybridly mode-locked semiconductor laser used in our experiments. GRIN, graded-index; BPF, bandpass filter.

Fig. 2
Fig. 2

Residual phase-noise experimental setup. The device under test (DUT) is the hybridly mode-locked laser diode and photodector. OSC, oscillator; AMPs, amplifiers.

Fig. 3
Fig. 3

Noise of the Agilent 8565EC spectrum analyzer. The offset is referenced to 9 GHz. (1) MLLD, the power spectrum of the current after direct detection of the output of our mode-locked laser diode. (2) SBO, the Poseidon SBO low-noise oscillator plugged directly into the spectrum analyzer to reveal the analyzer noise. (3) Noise floor of the analyzer without any input. The flat level corresponds to -130 dBc/Hz on our residual phase-noise plots. RBW, resolution bandwidth; VBW, video bandwidth.

Fig. 4
Fig. 4

Single-sideband phase noise of the hybridly MLLD and the corresponding noise floor. The plot is pieced together from vector signal analyzer measurements at low offset and rf spectrum analyzer measurements at high offsets. The measurement noise floor was obtained by substituting the MLLD with an equivalent microwave loss (51 dB in this case) and was given by the thermal noise of the amplifiers after the photodiode. The bandwidth of the mixer’s IF port was 2 GHz, which was wide enough to allow us to view the noise energy before it dipped below the measurement noise floor.

Fig. 5
Fig. 5

Integrated timing jitter in each decade of the phase noise shown in Fig. 4. The square root of the sum of the squares of the values in each decade yields the jitter over multiple decades. For example, the noise without the switching power supply spurs from 1 kHz to 10 MHz is 1.332+4.222+13.342+37.6021/2=40.14 fs. In the last decade, from 1 to 4.5 GHz, the white bar corresponds to the timing jitter, assuming that the noise is equal to the noise floor; the black bar corresponds to a theoretically expected -20dB/decade roll-off.

Fig. 6
Fig. 6

Timing jitter as a function of pulse width. A (100 Hz–100 MHz), B (10 Hz–10 MHz), C (100 Hz–30 MHz), and D (100 Hz–30 MHz) correspond to results from Refs. 5, 8, 9, and 10, respectively. Point E (10 Hz–10 MHz) corresponds to the present results and point F (200 kHz to 2.5 GHz) shows the increase in timing jitter when the intracavity optical filter bandwidth is broadened from 0.7 to 5 nm. Points C and D correspond to actively mode-locked erbium-doped fiber lasers. The straight lines are lines of constant κ, where σJ=κ/τ4 is the rms timing jitter, and τ is the intensity FWHM of the pulse. The constant κ decreases with smaller cavity losses, optical feedback, and improved modulation techniques.11 The mode-locking frequencies of the lasers were 5, 10, 10, 10, 9, and 5 GHz for the A, B, C, D, E, and F lasers, respectively.

Metrics