Abstract

We consider two solitons propagating under a filter-control scheme and describe the timing jitter that is caused by spontaneous-emission noise and enhanced by attraction between solitons. We find the bit-error rate as a function of system parameters (filtering and noise level), timing, initial distance, and the phase difference between solitons.

© 2002 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. R. Menyuk, Opt. Lett. 20, 285 (1995).
    [CrossRef] [PubMed]
  2. T. Georges, Opt. Commun. 123, 617 (1996).
    [CrossRef]
  3. G. Falkovich, I. Kolokolov, V. Lebedev, and S. Turitsyn, Phys. Rev. E 63, 025601(R) (2001).
    [CrossRef]
  4. G. Falkovich, I. Kolokolov, V. Lebedev, and A. Migdal, Phys. Rev. E 54, 4896 (1996).
    [CrossRef]
  5. J. P. Gordon and H. A. Haus, Opt. Lett. 11, 665 (1986).
    [CrossRef] [PubMed]
  6. J. Elgin, Phys. Lett. A 110, 441 (1985).
    [CrossRef]
  7. J. P. Gordon, Opt. Lett. 8, 596 (1983).
    [CrossRef] [PubMed]
  8. E. Iannone, F. Matera, A. Mecozzi, and M. Settembre, Nonlinear Optical Communication Networks (Wiley, New York, 1998).

2001 (1)

G. Falkovich, I. Kolokolov, V. Lebedev, and S. Turitsyn, Phys. Rev. E 63, 025601(R) (2001).
[CrossRef]

1996 (2)

G. Falkovich, I. Kolokolov, V. Lebedev, and A. Migdal, Phys. Rev. E 54, 4896 (1996).
[CrossRef]

T. Georges, Opt. Commun. 123, 617 (1996).
[CrossRef]

1995 (1)

1986 (1)

1985 (1)

J. Elgin, Phys. Lett. A 110, 441 (1985).
[CrossRef]

1983 (1)

Elgin, J.

J. Elgin, Phys. Lett. A 110, 441 (1985).
[CrossRef]

Falkovich, G.

G. Falkovich, I. Kolokolov, V. Lebedev, and S. Turitsyn, Phys. Rev. E 63, 025601(R) (2001).
[CrossRef]

G. Falkovich, I. Kolokolov, V. Lebedev, and A. Migdal, Phys. Rev. E 54, 4896 (1996).
[CrossRef]

Georges, T.

T. Georges, Opt. Commun. 123, 617 (1996).
[CrossRef]

Gordon, J. P.

Haus, H. A.

Iannone, E.

E. Iannone, F. Matera, A. Mecozzi, and M. Settembre, Nonlinear Optical Communication Networks (Wiley, New York, 1998).

Kolokolov, I.

G. Falkovich, I. Kolokolov, V. Lebedev, and S. Turitsyn, Phys. Rev. E 63, 025601(R) (2001).
[CrossRef]

G. Falkovich, I. Kolokolov, V. Lebedev, and A. Migdal, Phys. Rev. E 54, 4896 (1996).
[CrossRef]

Lebedev, V.

G. Falkovich, I. Kolokolov, V. Lebedev, and S. Turitsyn, Phys. Rev. E 63, 025601(R) (2001).
[CrossRef]

G. Falkovich, I. Kolokolov, V. Lebedev, and A. Migdal, Phys. Rev. E 54, 4896 (1996).
[CrossRef]

Matera, F.

E. Iannone, F. Matera, A. Mecozzi, and M. Settembre, Nonlinear Optical Communication Networks (Wiley, New York, 1998).

Mecozzi, A.

E. Iannone, F. Matera, A. Mecozzi, and M. Settembre, Nonlinear Optical Communication Networks (Wiley, New York, 1998).

Menyuk, C. R.

Migdal, A.

G. Falkovich, I. Kolokolov, V. Lebedev, and A. Migdal, Phys. Rev. E 54, 4896 (1996).
[CrossRef]

Settembre, M.

E. Iannone, F. Matera, A. Mecozzi, and M. Settembre, Nonlinear Optical Communication Networks (Wiley, New York, 1998).

Turitsyn, S.

G. Falkovich, I. Kolokolov, V. Lebedev, and S. Turitsyn, Phys. Rev. E 63, 025601(R) (2001).
[CrossRef]

Opt. Commun. (1)

T. Georges, Opt. Commun. 123, 617 (1996).
[CrossRef]

Opt. Lett. (3)

Phys. Lett. A (1)

J. Elgin, Phys. Lett. A 110, 441 (1985).
[CrossRef]

Phys. Rev. E (2)

G. Falkovich, I. Kolokolov, V. Lebedev, and S. Turitsyn, Phys. Rev. E 63, 025601(R) (2001).
[CrossRef]

G. Falkovich, I. Kolokolov, V. Lebedev, and A. Migdal, Phys. Rev. E 54, 4896 (1996).
[CrossRef]

Other (1)

E. Iannone, F. Matera, A. Mecozzi, and M. Settembre, Nonlinear Optical Communication Networks (Wiley, New York, 1998).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Distance PDF Pq. The parameters are as in Ref. 1: q0=11, γ=0.4, D=0.0002, and T=250. See text for explanation of curves.

Fig. 2
Fig. 2

BER1 as a function of q0. T=150, γ=0.4. See text for explanation of curves.

Fig. 3
Fig. 3

BER1 as a function of time. q0=8, γ=0.4. See text for explanation of curves.

Fig. 4
Fig. 4

BER1 as a function of initial phase ϕ0. q0=9.5, γ=0.4; curve 1, D=0.0003, T=200; curve 2, d=0.0006, T=100; curve 3, d=0.0048, T=25.

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

q¨+γq·=-8e-q cosϕ+ξ,
ϕ¨+γϕ·=-8e-q sinϕ+ξϕ.
t+qq·-q·8e-q+γq·-Dq·2Pq,q·,t=0,
γ2t-γq8e-q-Dq2Pq,t=0,
Pq,t=expζ-ζ0/2ζζ0-dk2πk2 coshπk×exp-Dk2t/γ2W-1/2,ikζW-1/2,-ikζ0,ζ=8γe-q/D.
γ2t+ϕ sin ϕ-q cos ϕ8γe-q-Dq2-Dϕϕ2Pq,ϕ,t=0.
ln EqT,q0,ϕ0,T;γ,D2qT-q¯-q0-q¯T2×γ2/4DT-ϕ02γ2/4DϕT.

Metrics