Abstract

Broadening of the pulse waveforms by the higher-order dispersion of a transmission line is a critical limiting factor in achieving terabit-per-second optical time-division multiplexed (OTDM) transmission with femtosecond pulses. We show that the third- and fourth-order dispersion of a transmission line can be simultaneously compensated for by use of a phase modulator. In this method, sinusoidal phase modulation applied to the linearly chirped pulse before transmission compensates for the phase shift caused by the third- and fourth-order dispersion of the transmission line. The pulse broadening of a 380-fs pulse after a 70-km transmission in a 1.28Tbit/s OTDM experiment was as small as 20  fs.

© 2001 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Nakazawa, T. Yamamoto, and K. R. Tamura, postdeadline paper presented at the European Conference on Optical Communication (ECOC2000), Munich, Germany , September 3–7, 2000.
  2. T. Yamamoto, E. Yoshida, K. R. Tamura, and M. Nakazawa, presented at the European Conference on Optical Communication (ECOC’99), Nice, France , September 26–30, 1999.
  3. M. D. Pelusi, X. Wang, F. Futami, K. Kikuchi, and A. Suzuki, IEEE Photon. Technol. Lett. 12, 795 (2000).
    [Crossref]
  4. M. D. Pelusi, Y. Matsui, and A. Suzuki, IEEE Photon. Technol. Lett. 11, 1461 (1999).
    [Crossref]

2000 (1)

M. D. Pelusi, X. Wang, F. Futami, K. Kikuchi, and A. Suzuki, IEEE Photon. Technol. Lett. 12, 795 (2000).
[Crossref]

1999 (1)

M. D. Pelusi, Y. Matsui, and A. Suzuki, IEEE Photon. Technol. Lett. 11, 1461 (1999).
[Crossref]

Futami, F.

M. D. Pelusi, X. Wang, F. Futami, K. Kikuchi, and A. Suzuki, IEEE Photon. Technol. Lett. 12, 795 (2000).
[Crossref]

Kikuchi, K.

M. D. Pelusi, X. Wang, F. Futami, K. Kikuchi, and A. Suzuki, IEEE Photon. Technol. Lett. 12, 795 (2000).
[Crossref]

Matsui, Y.

M. D. Pelusi, Y. Matsui, and A. Suzuki, IEEE Photon. Technol. Lett. 11, 1461 (1999).
[Crossref]

Nakazawa, M.

T. Yamamoto, E. Yoshida, K. R. Tamura, and M. Nakazawa, presented at the European Conference on Optical Communication (ECOC’99), Nice, France , September 26–30, 1999.

M. Nakazawa, T. Yamamoto, and K. R. Tamura, postdeadline paper presented at the European Conference on Optical Communication (ECOC2000), Munich, Germany , September 3–7, 2000.

Pelusi, M. D.

M. D. Pelusi, X. Wang, F. Futami, K. Kikuchi, and A. Suzuki, IEEE Photon. Technol. Lett. 12, 795 (2000).
[Crossref]

M. D. Pelusi, Y. Matsui, and A. Suzuki, IEEE Photon. Technol. Lett. 11, 1461 (1999).
[Crossref]

Suzuki, A.

M. D. Pelusi, X. Wang, F. Futami, K. Kikuchi, and A. Suzuki, IEEE Photon. Technol. Lett. 12, 795 (2000).
[Crossref]

M. D. Pelusi, Y. Matsui, and A. Suzuki, IEEE Photon. Technol. Lett. 11, 1461 (1999).
[Crossref]

Tamura, K. R.

T. Yamamoto, E. Yoshida, K. R. Tamura, and M. Nakazawa, presented at the European Conference on Optical Communication (ECOC’99), Nice, France , September 26–30, 1999.

M. Nakazawa, T. Yamamoto, and K. R. Tamura, postdeadline paper presented at the European Conference on Optical Communication (ECOC2000), Munich, Germany , September 3–7, 2000.

Wang, X.

M. D. Pelusi, X. Wang, F. Futami, K. Kikuchi, and A. Suzuki, IEEE Photon. Technol. Lett. 12, 795 (2000).
[Crossref]

Yamamoto, T.

T. Yamamoto, E. Yoshida, K. R. Tamura, and M. Nakazawa, presented at the European Conference on Optical Communication (ECOC’99), Nice, France , September 26–30, 1999.

M. Nakazawa, T. Yamamoto, and K. R. Tamura, postdeadline paper presented at the European Conference on Optical Communication (ECOC2000), Munich, Germany , September 3–7, 2000.

Yoshida, E.

T. Yamamoto, E. Yoshida, K. R. Tamura, and M. Nakazawa, presented at the European Conference on Optical Communication (ECOC’99), Nice, France , September 26–30, 1999.

IEEE Photon. Technol. Lett. (2)

M. D. Pelusi, X. Wang, F. Futami, K. Kikuchi, and A. Suzuki, IEEE Photon. Technol. Lett. 12, 795 (2000).
[Crossref]

M. D. Pelusi, Y. Matsui, and A. Suzuki, IEEE Photon. Technol. Lett. 11, 1461 (1999).
[Crossref]

Other (2)

M. Nakazawa, T. Yamamoto, and K. R. Tamura, postdeadline paper presented at the European Conference on Optical Communication (ECOC2000), Munich, Germany , September 3–7, 2000.

T. Yamamoto, E. Yoshida, K. R. Tamura, and M. Nakazawa, presented at the European Conference on Optical Communication (ECOC’99), Nice, France , September 26–30, 1999.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Phase shift versus frequency. (a) Phase shift caused by second-order (dashed curve) and fourth-order (thin solid curve) dispersion, cosine phase modulation (dotted curve), and the sum of these phase shifts (thick solid curve). (b) Phase shift caused by third-order dispersion (thin solid curve), sine phase modulation (dotted curve), and the sum of these phase shifts (thick solid curve). (c) Phase shift caused by cosine phase modulation (thin solid curve), sine phase modulation (dotted curve), and the sum of these phase shifts (thick solid curve). (d) Phase shift caused by the sum of the second-, third-, and fourth-order dispersion (thin solid curve), total phase modulation (dotted curve), and the sum of these phase shifts (thick solid curve).

Fig. 2
Fig. 2

Calculated pulse waveforms (a) distorted by the third-order dispersion of the transmission line, (b) distorted by the fourth-order dispersion of the transmission line, and (c) with dispersion compensated for by phase modulation. The thin curves show the initial pulse waveform.

Fig. 3
Fig. 3

Experimental setup of the third- and fourth-order dispersion-compensation scheme.

Fig. 4
Fig. 4

Measured autocorrelation waveforms (a) before transmission (without prechirping) and (b) after 70-km transmission.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

βL=β0L+β1Lω-ω0+β2L2ω-ω02+β3L6ω-ω03+β4L24ω-ω04+,
ϕt=-signϕcϕc2+ϕs2×cos2πR0t-arctanϕs/ϕc,

Metrics