Abstract

We present an ultrahigh-resolution saturation spectrometer based on a line-tunable carbon monoxide laser near 60  THz λ=5 μm. A spectral resolution of 14  kHz Δν/ν=2.3×10-10 for CO fundamental-band transitions was achieved, which improves on earlier results by one order of magnitude. A frequency-locking scheme using tunable microwave sidebands provides tunability and absolute frequency control of the CO laser on the kilohertz. Transit-time broadening and pressure broadening of the observed transitions are significantly reduced by use of expanded laser beams in a 24-m absorption cell at pressures down to 0.01  Pa. The new spectrometer is suitable for the study of saturation line shapes and the development of a new generation of frequency standards in the 60-THz region.

© 2001 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. V. Bernard, C. Daussy, and C. Chardonnet, IEEE J. Quant. Electron. 33, 1282 (1997).
    [CrossRef]
  2. C. Chardonnet, F. Guernet, G. Charton, and C. J. Bordé, Appl. Phys. B 59, 333 (1994).
    [CrossRef]
  3. S. N. Bagayev, E. V. Baklanov, and V. P. Chebotayev, Pis’ma Zh. Eksp. Teor. Fiz. 16, 15 (1972).
  4. M. H. Wappelhorst, M. Mürtz, P. Palm, and W. Urban, Appl. Phys. B 65, 25 (1997).
    [CrossRef]
  5. B. Meyer, S. Saupe, M. H. Wappelhorst, T. George, F. Kühnemann, M. Schneider, M. Havenith, W. Urban, and J. Legrand, Appl. Phys. B 61, 169 (1995).
    [CrossRef]
  6. T. George, S. Saupe, M. H. Wappelhorst, and W. Urban, Appl. Phys. B 59, 159 (1994).
    [CrossRef]

1997 (2)

V. Bernard, C. Daussy, and C. Chardonnet, IEEE J. Quant. Electron. 33, 1282 (1997).
[CrossRef]

M. H. Wappelhorst, M. Mürtz, P. Palm, and W. Urban, Appl. Phys. B 65, 25 (1997).
[CrossRef]

1995 (1)

B. Meyer, S. Saupe, M. H. Wappelhorst, T. George, F. Kühnemann, M. Schneider, M. Havenith, W. Urban, and J. Legrand, Appl. Phys. B 61, 169 (1995).
[CrossRef]

1994 (2)

T. George, S. Saupe, M. H. Wappelhorst, and W. Urban, Appl. Phys. B 59, 159 (1994).
[CrossRef]

C. Chardonnet, F. Guernet, G. Charton, and C. J. Bordé, Appl. Phys. B 59, 333 (1994).
[CrossRef]

1972 (1)

S. N. Bagayev, E. V. Baklanov, and V. P. Chebotayev, Pis’ma Zh. Eksp. Teor. Fiz. 16, 15 (1972).

Bagayev, S. N.

S. N. Bagayev, E. V. Baklanov, and V. P. Chebotayev, Pis’ma Zh. Eksp. Teor. Fiz. 16, 15 (1972).

Baklanov, E. V.

S. N. Bagayev, E. V. Baklanov, and V. P. Chebotayev, Pis’ma Zh. Eksp. Teor. Fiz. 16, 15 (1972).

Bernard, V.

V. Bernard, C. Daussy, and C. Chardonnet, IEEE J. Quant. Electron. 33, 1282 (1997).
[CrossRef]

Bordé, C. J.

C. Chardonnet, F. Guernet, G. Charton, and C. J. Bordé, Appl. Phys. B 59, 333 (1994).
[CrossRef]

Chardonnet, C.

V. Bernard, C. Daussy, and C. Chardonnet, IEEE J. Quant. Electron. 33, 1282 (1997).
[CrossRef]

C. Chardonnet, F. Guernet, G. Charton, and C. J. Bordé, Appl. Phys. B 59, 333 (1994).
[CrossRef]

Charton, G.

C. Chardonnet, F. Guernet, G. Charton, and C. J. Bordé, Appl. Phys. B 59, 333 (1994).
[CrossRef]

Chebotayev, V. P.

S. N. Bagayev, E. V. Baklanov, and V. P. Chebotayev, Pis’ma Zh. Eksp. Teor. Fiz. 16, 15 (1972).

Daussy, C.

V. Bernard, C. Daussy, and C. Chardonnet, IEEE J. Quant. Electron. 33, 1282 (1997).
[CrossRef]

George, T.

B. Meyer, S. Saupe, M. H. Wappelhorst, T. George, F. Kühnemann, M. Schneider, M. Havenith, W. Urban, and J. Legrand, Appl. Phys. B 61, 169 (1995).
[CrossRef]

T. George, S. Saupe, M. H. Wappelhorst, and W. Urban, Appl. Phys. B 59, 159 (1994).
[CrossRef]

Guernet, F.

C. Chardonnet, F. Guernet, G. Charton, and C. J. Bordé, Appl. Phys. B 59, 333 (1994).
[CrossRef]

Havenith, M.

B. Meyer, S. Saupe, M. H. Wappelhorst, T. George, F. Kühnemann, M. Schneider, M. Havenith, W. Urban, and J. Legrand, Appl. Phys. B 61, 169 (1995).
[CrossRef]

Kühnemann, F.

B. Meyer, S. Saupe, M. H. Wappelhorst, T. George, F. Kühnemann, M. Schneider, M. Havenith, W. Urban, and J. Legrand, Appl. Phys. B 61, 169 (1995).
[CrossRef]

Legrand, J.

B. Meyer, S. Saupe, M. H. Wappelhorst, T. George, F. Kühnemann, M. Schneider, M. Havenith, W. Urban, and J. Legrand, Appl. Phys. B 61, 169 (1995).
[CrossRef]

Meyer, B.

B. Meyer, S. Saupe, M. H. Wappelhorst, T. George, F. Kühnemann, M. Schneider, M. Havenith, W. Urban, and J. Legrand, Appl. Phys. B 61, 169 (1995).
[CrossRef]

Mürtz, M.

M. H. Wappelhorst, M. Mürtz, P. Palm, and W. Urban, Appl. Phys. B 65, 25 (1997).
[CrossRef]

Palm, P.

M. H. Wappelhorst, M. Mürtz, P. Palm, and W. Urban, Appl. Phys. B 65, 25 (1997).
[CrossRef]

Saupe, S.

B. Meyer, S. Saupe, M. H. Wappelhorst, T. George, F. Kühnemann, M. Schneider, M. Havenith, W. Urban, and J. Legrand, Appl. Phys. B 61, 169 (1995).
[CrossRef]

T. George, S. Saupe, M. H. Wappelhorst, and W. Urban, Appl. Phys. B 59, 159 (1994).
[CrossRef]

Schneider, M.

B. Meyer, S. Saupe, M. H. Wappelhorst, T. George, F. Kühnemann, M. Schneider, M. Havenith, W. Urban, and J. Legrand, Appl. Phys. B 61, 169 (1995).
[CrossRef]

Urban, W.

M. H. Wappelhorst, M. Mürtz, P. Palm, and W. Urban, Appl. Phys. B 65, 25 (1997).
[CrossRef]

B. Meyer, S. Saupe, M. H. Wappelhorst, T. George, F. Kühnemann, M. Schneider, M. Havenith, W. Urban, and J. Legrand, Appl. Phys. B 61, 169 (1995).
[CrossRef]

T. George, S. Saupe, M. H. Wappelhorst, and W. Urban, Appl. Phys. B 59, 159 (1994).
[CrossRef]

Wappelhorst, M. H.

M. H. Wappelhorst, M. Mürtz, P. Palm, and W. Urban, Appl. Phys. B 65, 25 (1997).
[CrossRef]

B. Meyer, S. Saupe, M. H. Wappelhorst, T. George, F. Kühnemann, M. Schneider, M. Havenith, W. Urban, and J. Legrand, Appl. Phys. B 61, 169 (1995).
[CrossRef]

T. George, S. Saupe, M. H. Wappelhorst, and W. Urban, Appl. Phys. B 59, 159 (1994).
[CrossRef]

Appl. Phys. B (4)

C. Chardonnet, F. Guernet, G. Charton, and C. J. Bordé, Appl. Phys. B 59, 333 (1994).
[CrossRef]

M. H. Wappelhorst, M. Mürtz, P. Palm, and W. Urban, Appl. Phys. B 65, 25 (1997).
[CrossRef]

B. Meyer, S. Saupe, M. H. Wappelhorst, T. George, F. Kühnemann, M. Schneider, M. Havenith, W. Urban, and J. Legrand, Appl. Phys. B 61, 169 (1995).
[CrossRef]

T. George, S. Saupe, M. H. Wappelhorst, and W. Urban, Appl. Phys. B 59, 159 (1994).
[CrossRef]

IEEE J. Quant. Electron. (1)

V. Bernard, C. Daussy, and C. Chardonnet, IEEE J. Quant. Electron. 33, 1282 (1997).
[CrossRef]

Pis’ma Zh. Eksp. Teor. Fiz. (1)

S. N. Bagayev, E. V. Baklanov, and V. P. Chebotayev, Pis’ma Zh. Eksp. Teor. Fiz. 16, 15 (1972).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Schematic of the experimental setup: PZTS, piezoelectrical transducers; LPAC, long-path absorption cell; PD’s, photodiodes; CH, chopper; RP’s, Rochon polarizers; PR, polarization rotator; SB, sideband; CA, carrier; LOCK-IN, lock-in amplifier; COMP, computer; MW, microwave synthesizer; PIS, proportional-integral amplifiers.

Fig. 2
Fig. 2

Fourier frequency spectrum of the error signal of the frequency-locking loop.

Fig. 3
Fig. 3

Long-path absorption cell in the 24-m configuration. One of the four beam reflectors at the ends of the cell is shown at the bottom right.

Fig. 4
Fig. 4

Lamb dip of the CO P15 v=10 transition near 62  THz. CO pressure, 0.015  Pa; absorption path, 24  m; power of the pump beam, 211 μW; beam diameter, 2w0=27.6 mm. Diamonds, experimental data; curve, least-squares fit of a Lorentzian line shape.

Metrics