Abstract

We demonstrate the generation of sub-6-fs pulses centered at 405  nm by frequency doubling of 8.6-fs Ti:sapphire laser pulses. The frequency doubling is carried out in a nonlinearly chirped quasi-phase-matching grating fabricated in a lithium tantalate substrate. This device simultaneously provides frequency conversion and pulse compression of the positively prechirped fundamental pulses. The second-harmonic pulses are characterized in a cross-correlation setup, and their pulse shapes are retrieved by two iterative phase-reconstruction algorithms. The generated second-harmonic spectrum spans a bandwidth of 220  THz. To our knowledge, these are the shortest pulses ever generated in the blue spectral region.

© 2001 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. Steinmeyer, D. H. Sutter, L. Gallmann, N. Matuschek, and U. Keller, Science 286, 1507 (1999).
    [CrossRef] [PubMed]
  2. D. Steinbach, W. Hügel, and M. Wegener, J. Opt. Soc. Am. B 15, 1231 (1998).
    [CrossRef]
  3. A. Fürbach, T. Le, C. Spielmann, and F. Krausz, Appl. Phys. B 70, S37 (2000).
    [CrossRef]
  4. M. M. Fejer, G. A. Magel, D. H. Jundt, and R. L. Byer, IEEE J. Quantum Electron. 28, 2631 (1992).
    [CrossRef]
  5. M. A. Arbore, O. Marco, and M. M. Fejer, Opt. Lett. 22, 865 (1997).
    [CrossRef] [PubMed]
  6. G. Imeshev, M. A. Arbore, M. M. Fejer, A. Galvanauskas, M. Fermann, and D. Harter, J. Opt. Soc. Am. B 17, 304 (2000).
    [CrossRef]
  7. M. A. Arbore, A. Galvanauskas, D. Harter, M. H. Chou, and M. M. Fejer, Opt. Lett. 22, 1341 (1997).
    [CrossRef]
  8. G. Imeshev, M. A. Arbore, S. Kasriel, and M. M. Fejer, J. Opt. Soc. Am. B 17, 1420 (2000).
    [CrossRef]
  9. J.-P. Meyn and M. M. Fejer, Opt. Lett. 22, 1214 (1997).
    [CrossRef] [PubMed]
  10. The designed QPM grating period is approximated by Λz=7,725,550/z-3731.74-7,886,010/z-3800.3+30.76/18.16+z, with Λ and z in micro-meters.
  11. D. H. Sutter, G. Steinmeyer, L. Gallmann, N. Matuschek, F. Morier-Genoud, U. Keller, V. Scheuer, G. Angelow, and T. Tschudi, Opt. Lett. 24, 631 (1999).
    [CrossRef]
  12. C. Iaconis and I. A. Walmsley, Opt. Lett. 23, 792 (1998).
    [CrossRef]
  13. L. Gallmann, D. H. Sutter, N. Matuschek, G. Steinmeyer, U. Keller, C. Iaconis, and I. A. Walmsley, Opt. Lett. 24, 1314 (1999).
    [CrossRef]
  14. A. Baltuska, A. Pugzlys, M. S. Pshenichnikov, and D. A. Wiersma, in Digest of Conference on Lasers and Electro-Optics2000 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1999), paper CWF22.

2000

1999

1998

1997

1992

M. M. Fejer, G. A. Magel, D. H. Jundt, and R. L. Byer, IEEE J. Quantum Electron. 28, 2631 (1992).
[CrossRef]

Angelow, G.

Arbore, M. A.

Baltuska, A.

A. Baltuska, A. Pugzlys, M. S. Pshenichnikov, and D. A. Wiersma, in Digest of Conference on Lasers and Electro-Optics2000 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1999), paper CWF22.

Byer, R. L.

M. M. Fejer, G. A. Magel, D. H. Jundt, and R. L. Byer, IEEE J. Quantum Electron. 28, 2631 (1992).
[CrossRef]

Chou, M. H.

Fejer, M. M.

Fermann, M.

Fürbach, A.

A. Fürbach, T. Le, C. Spielmann, and F. Krausz, Appl. Phys. B 70, S37 (2000).
[CrossRef]

Gallmann, L.

Galvanauskas, A.

Harter, D.

Hügel, W.

Iaconis, C.

Imeshev, G.

Jundt, D. H.

M. M. Fejer, G. A. Magel, D. H. Jundt, and R. L. Byer, IEEE J. Quantum Electron. 28, 2631 (1992).
[CrossRef]

Kasriel, S.

Keller, U.

Krausz, F.

A. Fürbach, T. Le, C. Spielmann, and F. Krausz, Appl. Phys. B 70, S37 (2000).
[CrossRef]

Le, T.

A. Fürbach, T. Le, C. Spielmann, and F. Krausz, Appl. Phys. B 70, S37 (2000).
[CrossRef]

Magel, G. A.

M. M. Fejer, G. A. Magel, D. H. Jundt, and R. L. Byer, IEEE J. Quantum Electron. 28, 2631 (1992).
[CrossRef]

Marco, O.

Matuschek, N.

Meyn, J.-P.

Morier-Genoud, F.

Pshenichnikov, M. S.

A. Baltuska, A. Pugzlys, M. S. Pshenichnikov, and D. A. Wiersma, in Digest of Conference on Lasers and Electro-Optics2000 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1999), paper CWF22.

Pugzlys, A.

A. Baltuska, A. Pugzlys, M. S. Pshenichnikov, and D. A. Wiersma, in Digest of Conference on Lasers and Electro-Optics2000 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1999), paper CWF22.

Scheuer, V.

Spielmann, C.

A. Fürbach, T. Le, C. Spielmann, and F. Krausz, Appl. Phys. B 70, S37 (2000).
[CrossRef]

Steinbach, D.

Steinmeyer, G.

Sutter, D. H.

Tschudi, T.

Walmsley, I. A.

Wegener, M.

Wiersma, D. A.

A. Baltuska, A. Pugzlys, M. S. Pshenichnikov, and D. A. Wiersma, in Digest of Conference on Lasers and Electro-Optics2000 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1999), paper CWF22.

Appl. Phys. B

A. Fürbach, T. Le, C. Spielmann, and F. Krausz, Appl. Phys. B 70, S37 (2000).
[CrossRef]

IEEE J. Quantum Electron.

M. M. Fejer, G. A. Magel, D. H. Jundt, and R. L. Byer, IEEE J. Quantum Electron. 28, 2631 (1992).
[CrossRef]

J. Opt. Soc. Am. B

Opt. Lett.

Science

G. Steinmeyer, D. H. Sutter, L. Gallmann, N. Matuschek, and U. Keller, Science 286, 1507 (1999).
[CrossRef] [PubMed]

Other

The designed QPM grating period is approximated by Λz=7,725,550/z-3731.74-7,886,010/z-3800.3+30.76/18.16+z, with Λ and z in micro-meters.

A. Baltuska, A. Pugzlys, M. S. Pshenichnikov, and D. A. Wiersma, in Digest of Conference on Lasers and Electro-Optics2000 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1999), paper CWF22.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Experimental setup for generation and characterization of SH pulses. Note the exclusive use of reflective optics for the reference beam and the doubling-crystal output. BS, beam splitter; FS, adjustable fused-silica wedges; PZT, piezo-driven translation stage; SFG, cross-correlation crystal; PMT, solar-blind photomultiplier.

Fig. 2
Fig. 2

Measured cross correlations (solid curves) on a linear (top) and a logarithmic scale (bottom). In addition to the measured data, the cross correlations reconstructed by the two algorithms described in the text are shown (dashed–dotted curve, algorithm  1; dotted curve, algorithm  2).

Fig. 3
Fig. 3

Measured and reconstructed SH data (a) Measured SH power spectrum (solid curve) compared with the theoretically expected spectrum (dashed curve). The spectral phase of the SH pulse was consistently retrieved by use of the two decorrelation algorithms described in the text. (b) Both algorithms yield nearly identical SH pulse shapes corresponding to pulse durations of 5.2  fs for algorithm 1 (dashed–dotted curve) and 5.4  fs for algorithm 2 (dotted curve).

Metrics