Abstract

The transduction of sound into light through the implosion of a bubble of gas leads to a flash of light whose duration is delineated in picoseconds. Combined measurements of spectral irradiance, Mie scattering, and flash width (as determined by time-correlated single-photon counting) suggest that sonoluminescence from hydrogen and noble-gas bubbles is radiation from a blackbody with temperatures ranging from 6000 KH2 to 20,000  K  (He) and a surface of emission whose radius ranges from 0.1 μmHe to 0.4 μmXe. The state of matter that would admit photon–matter equilibrium under such conditions is a mystery.

© 2001 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Ya. B. Zeldovich and Yu. P. Raizer, Physics of Shock Waves and High-Temperature Hydrodynamic Phenomena (Academic, New York, 1966, 1967), Vols. 1 and 2.
  2. R. Hiller, S. Putterman, and B. P. Barber, Phys. Rev. Lett. 69, 1182 (1992).
    [CrossRef] [PubMed]
  3. R. Hiller and S. Putterman, Phys. Rev. Lett. 75, 3549 (1995).
    [CrossRef] [PubMed]
  4. R. Hiller and S. Putterman, Phys. Rev. Lett. 77, 2345 (1996) erratum of Ref.  3.
    [CrossRef]
  5. B. P. Barber, R. A. Hiller, R. Löfstedt, S. J. Putterman, and K. R. Weninger, Phys. Rep.281, 67 (1997).
    [CrossRef]
  6. R. A. Hiller, S. J. Putterman, and K. R. Weninger, Phys. Rev. Lett. 80, 1090 (1998).
    [CrossRef]
  7. T. Matula, R. A. Roy, P. D. Mourad, W. B. McNamara, and K. S. Suslick, Phys. Rev. Lett. 75, 2602 (1995).
    [CrossRef] [PubMed]
  8. The data are acquired from bubbles that are acoustically driven in sealed cylindrical resonators constructed with quartz walls (Figs.  1 and 3), suprasil walls (Fig.  2), and stainless-steel endcaps.5 The spectrometer (Acton 308i) was calibrated with quartz tungsten halogen and D2 lamps. No spectra are corrected for transmission of water or quartz. For quartz, but not suprasil, there is absorption for wavelengths below 300  nm that rises to 25% at 200  nm. We attribute the bump in the data at 550  nm and the dip at 360  nm to documented errors in the manufacturer-supplied calibration of our lamps (see Fig.  75 of Ref.  5).
  9. The spectra reported here have the same spectral density and detailed shape as reported in previous papers. But in the course of recalibrating the system we find that the scale for the y axis, namely, spectral radiance, is generally lower, being down by roughly a factor of 12 compared with what was reported in Refs.  3 and 6. We have verified the new data calibrated against various lamp standards with photon counting through bandpass filters. Previously quoted values of photons per flash remain unchanged. We believe that the mistake in scaling the y axis is greater than can be accounted for by resonator variability, drive level, or thermal drift (see the discussion in Ref.  5). The corrected value of radiance plus our ability to measure flash width and bubble size combine to make possible the quantitative comparisons with blackbody radiation that are proposed here.
  10. J. Maddox, Nature 361, 397 (1993).
    [CrossRef]
  11. B. P. Barber and P. J. Putterman, Nature 352, 318 (1991).
    [CrossRef]
  12. B. Gompf, R. Günther, G. Nick, R. Pecha, and W. Eisenmenger, Phys. Rev. Lett. 79, 1405 (1997).
    [CrossRef]
  13. C. C. Wu and P. H. Roberts, Phys. Rev. Lett. 70, 3424 (1993).
    [CrossRef] [PubMed]
  14. W. C. Moss, D. B. Clarke, and D. A. Young, Science 276, 1398 (1997).
    [CrossRef]
  15. S. Putterman, Sci. Am. 272(2), 46 (1995).
    [CrossRef]
  16. D. Hammer and L. Fromhold, Phys. Rev. Lett. 85, 1326 (2000).
    [CrossRef] [PubMed]
  17. S. Hilgenfeldt, S. Grossman, and D. Lohse, Nature 398, 402 (1999).
    [CrossRef]
  18. S. J. Putterman and K. R. Weninger, Ann. Rev. Fluid Mech. 32, 445 (2000).
    [CrossRef]
  19. G. Vazquez, C. Camara, S. Putterman, and K. Weninger, “Blackbody spectra for sonoluminescing hydrogen bubbles” (submitted to Phys. Rev. Lett.), also present data that indicate an ambient radius of ∼3.0 μm.
  20. R. Hiller, “Spectrum of single bubble sonoluminescence,” Ph.D. dissertation (University of California, Los Angeles, Los Angeles, Calif., 1995).
  21. W. K. McGregor, J. Quant. Spectrosc. Radiat. Transfer 19, 659 (1978).
    [CrossRef]
  22. H. P. Baltes, Am. J. Phys. 42, 505 (1974).
    [CrossRef]
  23. B. E. Kalensher, J. Appl. Phys. 56, 1347 (1984).
    [CrossRef]
  24. R. J. Thomas, D. X. Hammer, G. D. Noojin, D. J. Stolarski, B. A. Rockwell, and W. P. Roach, Proc. SPIE 2681, 402 (1996).
    [CrossRef]
  25. O. Baghdassarian, B. Tabbert, and G. A. Williams, in “Spectrum of luminescence from bubble collapse: light from a plasma,” (submitted to Phys. Rev. Lett.), report blackbody-like spectral densities from laser-generated plasmas in water and from the ensuing cavitation collapse.
  26. E. A. Rohlfing, J. Chem. Phys. 89, 6103 (1988).
    [CrossRef]
  27. U. Frenzel, A. Roggenkamp, and D. Kreisle, Chem. Phys. Lett. 240, 109 (1995).
    [CrossRef]
  28. P. Heszler, J. O. Carlsson, and P. Demirev, J. Chem. Phys. 107, 10440 (1997).
    [CrossRef]
  29. K. Hansen and E. E. B. Campbell, Phys. Rev. E 58, 5477 (1998).
    [CrossRef]
  30. K. Weninger, C. G. Camara, and S. J. Putterman, Phys. Rev. E 63, 016310 (2001), describe the 1- and 11-MHz techniques.
    [CrossRef]
  31. S. Ruuth, S. Putterman, and B. Merriman, “Hard sphere model of a sonoluminescing bubble,” (submitted to Phys. Rev. Lett.).

2001 (1)

K. Weninger, C. G. Camara, and S. J. Putterman, Phys. Rev. E 63, 016310 (2001), describe the 1- and 11-MHz techniques.
[CrossRef]

2000 (2)

D. Hammer and L. Fromhold, Phys. Rev. Lett. 85, 1326 (2000).
[CrossRef] [PubMed]

S. J. Putterman and K. R. Weninger, Ann. Rev. Fluid Mech. 32, 445 (2000).
[CrossRef]

1999 (1)

S. Hilgenfeldt, S. Grossman, and D. Lohse, Nature 398, 402 (1999).
[CrossRef]

1998 (2)

R. A. Hiller, S. J. Putterman, and K. R. Weninger, Phys. Rev. Lett. 80, 1090 (1998).
[CrossRef]

K. Hansen and E. E. B. Campbell, Phys. Rev. E 58, 5477 (1998).
[CrossRef]

1997 (3)

P. Heszler, J. O. Carlsson, and P. Demirev, J. Chem. Phys. 107, 10440 (1997).
[CrossRef]

B. Gompf, R. Günther, G. Nick, R. Pecha, and W. Eisenmenger, Phys. Rev. Lett. 79, 1405 (1997).
[CrossRef]

W. C. Moss, D. B. Clarke, and D. A. Young, Science 276, 1398 (1997).
[CrossRef]

1996 (2)

R. Hiller and S. Putterman, Phys. Rev. Lett. 77, 2345 (1996) erratum of Ref.  3.
[CrossRef]

R. J. Thomas, D. X. Hammer, G. D. Noojin, D. J. Stolarski, B. A. Rockwell, and W. P. Roach, Proc. SPIE 2681, 402 (1996).
[CrossRef]

1995 (4)

U. Frenzel, A. Roggenkamp, and D. Kreisle, Chem. Phys. Lett. 240, 109 (1995).
[CrossRef]

S. Putterman, Sci. Am. 272(2), 46 (1995).
[CrossRef]

R. Hiller and S. Putterman, Phys. Rev. Lett. 75, 3549 (1995).
[CrossRef] [PubMed]

T. Matula, R. A. Roy, P. D. Mourad, W. B. McNamara, and K. S. Suslick, Phys. Rev. Lett. 75, 2602 (1995).
[CrossRef] [PubMed]

1993 (2)

J. Maddox, Nature 361, 397 (1993).
[CrossRef]

C. C. Wu and P. H. Roberts, Phys. Rev. Lett. 70, 3424 (1993).
[CrossRef] [PubMed]

1992 (1)

R. Hiller, S. Putterman, and B. P. Barber, Phys. Rev. Lett. 69, 1182 (1992).
[CrossRef] [PubMed]

1991 (1)

B. P. Barber and P. J. Putterman, Nature 352, 318 (1991).
[CrossRef]

1988 (1)

E. A. Rohlfing, J. Chem. Phys. 89, 6103 (1988).
[CrossRef]

1984 (1)

B. E. Kalensher, J. Appl. Phys. 56, 1347 (1984).
[CrossRef]

1978 (1)

W. K. McGregor, J. Quant. Spectrosc. Radiat. Transfer 19, 659 (1978).
[CrossRef]

1974 (1)

H. P. Baltes, Am. J. Phys. 42, 505 (1974).
[CrossRef]

Baghdassarian, O.

O. Baghdassarian, B. Tabbert, and G. A. Williams, in “Spectrum of luminescence from bubble collapse: light from a plasma,” (submitted to Phys. Rev. Lett.), report blackbody-like spectral densities from laser-generated plasmas in water and from the ensuing cavitation collapse.

Baltes, H. P.

H. P. Baltes, Am. J. Phys. 42, 505 (1974).
[CrossRef]

Barber, B. P.

R. Hiller, S. Putterman, and B. P. Barber, Phys. Rev. Lett. 69, 1182 (1992).
[CrossRef] [PubMed]

B. P. Barber and P. J. Putterman, Nature 352, 318 (1991).
[CrossRef]

B. P. Barber, R. A. Hiller, R. Löfstedt, S. J. Putterman, and K. R. Weninger, Phys. Rep.281, 67 (1997).
[CrossRef]

Camara, C.

G. Vazquez, C. Camara, S. Putterman, and K. Weninger, “Blackbody spectra for sonoluminescing hydrogen bubbles” (submitted to Phys. Rev. Lett.), also present data that indicate an ambient radius of ∼3.0 μm.

Camara, C. G.

K. Weninger, C. G. Camara, and S. J. Putterman, Phys. Rev. E 63, 016310 (2001), describe the 1- and 11-MHz techniques.
[CrossRef]

Campbell, E. E. B.

K. Hansen and E. E. B. Campbell, Phys. Rev. E 58, 5477 (1998).
[CrossRef]

Carlsson, J. O.

P. Heszler, J. O. Carlsson, and P. Demirev, J. Chem. Phys. 107, 10440 (1997).
[CrossRef]

Clarke, D. B.

W. C. Moss, D. B. Clarke, and D. A. Young, Science 276, 1398 (1997).
[CrossRef]

Demirev, P.

P. Heszler, J. O. Carlsson, and P. Demirev, J. Chem. Phys. 107, 10440 (1997).
[CrossRef]

Eisenmenger, W.

B. Gompf, R. Günther, G. Nick, R. Pecha, and W. Eisenmenger, Phys. Rev. Lett. 79, 1405 (1997).
[CrossRef]

Frenzel, U.

U. Frenzel, A. Roggenkamp, and D. Kreisle, Chem. Phys. Lett. 240, 109 (1995).
[CrossRef]

Fromhold, L.

D. Hammer and L. Fromhold, Phys. Rev. Lett. 85, 1326 (2000).
[CrossRef] [PubMed]

Gompf, B.

B. Gompf, R. Günther, G. Nick, R. Pecha, and W. Eisenmenger, Phys. Rev. Lett. 79, 1405 (1997).
[CrossRef]

Grossman, S.

S. Hilgenfeldt, S. Grossman, and D. Lohse, Nature 398, 402 (1999).
[CrossRef]

Günther, R.

B. Gompf, R. Günther, G. Nick, R. Pecha, and W. Eisenmenger, Phys. Rev. Lett. 79, 1405 (1997).
[CrossRef]

Hammer, D.

D. Hammer and L. Fromhold, Phys. Rev. Lett. 85, 1326 (2000).
[CrossRef] [PubMed]

Hammer, D. X.

R. J. Thomas, D. X. Hammer, G. D. Noojin, D. J. Stolarski, B. A. Rockwell, and W. P. Roach, Proc. SPIE 2681, 402 (1996).
[CrossRef]

Hansen, K.

K. Hansen and E. E. B. Campbell, Phys. Rev. E 58, 5477 (1998).
[CrossRef]

Heszler, P.

P. Heszler, J. O. Carlsson, and P. Demirev, J. Chem. Phys. 107, 10440 (1997).
[CrossRef]

Hilgenfeldt, S.

S. Hilgenfeldt, S. Grossman, and D. Lohse, Nature 398, 402 (1999).
[CrossRef]

Hiller, R.

R. Hiller and S. Putterman, Phys. Rev. Lett. 77, 2345 (1996) erratum of Ref.  3.
[CrossRef]

R. Hiller and S. Putterman, Phys. Rev. Lett. 75, 3549 (1995).
[CrossRef] [PubMed]

R. Hiller, S. Putterman, and B. P. Barber, Phys. Rev. Lett. 69, 1182 (1992).
[CrossRef] [PubMed]

R. Hiller, “Spectrum of single bubble sonoluminescence,” Ph.D. dissertation (University of California, Los Angeles, Los Angeles, Calif., 1995).

Hiller, R. A.

R. A. Hiller, S. J. Putterman, and K. R. Weninger, Phys. Rev. Lett. 80, 1090 (1998).
[CrossRef]

B. P. Barber, R. A. Hiller, R. Löfstedt, S. J. Putterman, and K. R. Weninger, Phys. Rep.281, 67 (1997).
[CrossRef]

Kalensher, B. E.

B. E. Kalensher, J. Appl. Phys. 56, 1347 (1984).
[CrossRef]

Kreisle, D.

U. Frenzel, A. Roggenkamp, and D. Kreisle, Chem. Phys. Lett. 240, 109 (1995).
[CrossRef]

Löfstedt, R.

B. P. Barber, R. A. Hiller, R. Löfstedt, S. J. Putterman, and K. R. Weninger, Phys. Rep.281, 67 (1997).
[CrossRef]

Lohse, D.

S. Hilgenfeldt, S. Grossman, and D. Lohse, Nature 398, 402 (1999).
[CrossRef]

Maddox, J.

J. Maddox, Nature 361, 397 (1993).
[CrossRef]

Matula, T.

T. Matula, R. A. Roy, P. D. Mourad, W. B. McNamara, and K. S. Suslick, Phys. Rev. Lett. 75, 2602 (1995).
[CrossRef] [PubMed]

McGregor, W. K.

W. K. McGregor, J. Quant. Spectrosc. Radiat. Transfer 19, 659 (1978).
[CrossRef]

McNamara, W. B.

T. Matula, R. A. Roy, P. D. Mourad, W. B. McNamara, and K. S. Suslick, Phys. Rev. Lett. 75, 2602 (1995).
[CrossRef] [PubMed]

Merriman, B.

S. Ruuth, S. Putterman, and B. Merriman, “Hard sphere model of a sonoluminescing bubble,” (submitted to Phys. Rev. Lett.).

Moss, W. C.

W. C. Moss, D. B. Clarke, and D. A. Young, Science 276, 1398 (1997).
[CrossRef]

Mourad, P. D.

T. Matula, R. A. Roy, P. D. Mourad, W. B. McNamara, and K. S. Suslick, Phys. Rev. Lett. 75, 2602 (1995).
[CrossRef] [PubMed]

Nick, G.

B. Gompf, R. Günther, G. Nick, R. Pecha, and W. Eisenmenger, Phys. Rev. Lett. 79, 1405 (1997).
[CrossRef]

Noojin, G. D.

R. J. Thomas, D. X. Hammer, G. D. Noojin, D. J. Stolarski, B. A. Rockwell, and W. P. Roach, Proc. SPIE 2681, 402 (1996).
[CrossRef]

Pecha, R.

B. Gompf, R. Günther, G. Nick, R. Pecha, and W. Eisenmenger, Phys. Rev. Lett. 79, 1405 (1997).
[CrossRef]

Putterman, P. J.

B. P. Barber and P. J. Putterman, Nature 352, 318 (1991).
[CrossRef]

Putterman, S.

R. Hiller and S. Putterman, Phys. Rev. Lett. 77, 2345 (1996) erratum of Ref.  3.
[CrossRef]

R. Hiller and S. Putterman, Phys. Rev. Lett. 75, 3549 (1995).
[CrossRef] [PubMed]

S. Putterman, Sci. Am. 272(2), 46 (1995).
[CrossRef]

R. Hiller, S. Putterman, and B. P. Barber, Phys. Rev. Lett. 69, 1182 (1992).
[CrossRef] [PubMed]

G. Vazquez, C. Camara, S. Putterman, and K. Weninger, “Blackbody spectra for sonoluminescing hydrogen bubbles” (submitted to Phys. Rev. Lett.), also present data that indicate an ambient radius of ∼3.0 μm.

S. Ruuth, S. Putterman, and B. Merriman, “Hard sphere model of a sonoluminescing bubble,” (submitted to Phys. Rev. Lett.).

Putterman, S. J.

K. Weninger, C. G. Camara, and S. J. Putterman, Phys. Rev. E 63, 016310 (2001), describe the 1- and 11-MHz techniques.
[CrossRef]

S. J. Putterman and K. R. Weninger, Ann. Rev. Fluid Mech. 32, 445 (2000).
[CrossRef]

R. A. Hiller, S. J. Putterman, and K. R. Weninger, Phys. Rev. Lett. 80, 1090 (1998).
[CrossRef]

B. P. Barber, R. A. Hiller, R. Löfstedt, S. J. Putterman, and K. R. Weninger, Phys. Rep.281, 67 (1997).
[CrossRef]

Raizer, Yu. P.

Ya. B. Zeldovich and Yu. P. Raizer, Physics of Shock Waves and High-Temperature Hydrodynamic Phenomena (Academic, New York, 1966, 1967), Vols. 1 and 2.

Roach, W. P.

R. J. Thomas, D. X. Hammer, G. D. Noojin, D. J. Stolarski, B. A. Rockwell, and W. P. Roach, Proc. SPIE 2681, 402 (1996).
[CrossRef]

Roberts, P. H.

C. C. Wu and P. H. Roberts, Phys. Rev. Lett. 70, 3424 (1993).
[CrossRef] [PubMed]

Rockwell, B. A.

R. J. Thomas, D. X. Hammer, G. D. Noojin, D. J. Stolarski, B. A. Rockwell, and W. P. Roach, Proc. SPIE 2681, 402 (1996).
[CrossRef]

Roggenkamp, A.

U. Frenzel, A. Roggenkamp, and D. Kreisle, Chem. Phys. Lett. 240, 109 (1995).
[CrossRef]

Rohlfing, E. A.

E. A. Rohlfing, J. Chem. Phys. 89, 6103 (1988).
[CrossRef]

Roy, R. A.

T. Matula, R. A. Roy, P. D. Mourad, W. B. McNamara, and K. S. Suslick, Phys. Rev. Lett. 75, 2602 (1995).
[CrossRef] [PubMed]

Ruuth, S.

S. Ruuth, S. Putterman, and B. Merriman, “Hard sphere model of a sonoluminescing bubble,” (submitted to Phys. Rev. Lett.).

Stolarski, D. J.

R. J. Thomas, D. X. Hammer, G. D. Noojin, D. J. Stolarski, B. A. Rockwell, and W. P. Roach, Proc. SPIE 2681, 402 (1996).
[CrossRef]

Suslick, K. S.

T. Matula, R. A. Roy, P. D. Mourad, W. B. McNamara, and K. S. Suslick, Phys. Rev. Lett. 75, 2602 (1995).
[CrossRef] [PubMed]

Tabbert, B.

O. Baghdassarian, B. Tabbert, and G. A. Williams, in “Spectrum of luminescence from bubble collapse: light from a plasma,” (submitted to Phys. Rev. Lett.), report blackbody-like spectral densities from laser-generated plasmas in water and from the ensuing cavitation collapse.

Thomas, R. J.

R. J. Thomas, D. X. Hammer, G. D. Noojin, D. J. Stolarski, B. A. Rockwell, and W. P. Roach, Proc. SPIE 2681, 402 (1996).
[CrossRef]

Vazquez, G.

G. Vazquez, C. Camara, S. Putterman, and K. Weninger, “Blackbody spectra for sonoluminescing hydrogen bubbles” (submitted to Phys. Rev. Lett.), also present data that indicate an ambient radius of ∼3.0 μm.

Weninger, K.

K. Weninger, C. G. Camara, and S. J. Putterman, Phys. Rev. E 63, 016310 (2001), describe the 1- and 11-MHz techniques.
[CrossRef]

G. Vazquez, C. Camara, S. Putterman, and K. Weninger, “Blackbody spectra for sonoluminescing hydrogen bubbles” (submitted to Phys. Rev. Lett.), also present data that indicate an ambient radius of ∼3.0 μm.

Weninger, K. R.

S. J. Putterman and K. R. Weninger, Ann. Rev. Fluid Mech. 32, 445 (2000).
[CrossRef]

R. A. Hiller, S. J. Putterman, and K. R. Weninger, Phys. Rev. Lett. 80, 1090 (1998).
[CrossRef]

B. P. Barber, R. A. Hiller, R. Löfstedt, S. J. Putterman, and K. R. Weninger, Phys. Rep.281, 67 (1997).
[CrossRef]

Williams, G. A.

O. Baghdassarian, B. Tabbert, and G. A. Williams, in “Spectrum of luminescence from bubble collapse: light from a plasma,” (submitted to Phys. Rev. Lett.), report blackbody-like spectral densities from laser-generated plasmas in water and from the ensuing cavitation collapse.

Wu, C. C.

C. C. Wu and P. H. Roberts, Phys. Rev. Lett. 70, 3424 (1993).
[CrossRef] [PubMed]

Young, D. A.

W. C. Moss, D. B. Clarke, and D. A. Young, Science 276, 1398 (1997).
[CrossRef]

Zeldovich, Ya. B.

Ya. B. Zeldovich and Yu. P. Raizer, Physics of Shock Waves and High-Temperature Hydrodynamic Phenomena (Academic, New York, 1966, 1967), Vols. 1 and 2.

Am. J. Phys. (1)

H. P. Baltes, Am. J. Phys. 42, 505 (1974).
[CrossRef]

Ann. Rev. Fluid Mech. (1)

S. J. Putterman and K. R. Weninger, Ann. Rev. Fluid Mech. 32, 445 (2000).
[CrossRef]

Chem. Phys. Lett. (1)

U. Frenzel, A. Roggenkamp, and D. Kreisle, Chem. Phys. Lett. 240, 109 (1995).
[CrossRef]

J. Appl. Phys. (1)

B. E. Kalensher, J. Appl. Phys. 56, 1347 (1984).
[CrossRef]

J. Chem. Phys. (2)

E. A. Rohlfing, J. Chem. Phys. 89, 6103 (1988).
[CrossRef]

P. Heszler, J. O. Carlsson, and P. Demirev, J. Chem. Phys. 107, 10440 (1997).
[CrossRef]

J. Quant. Spectrosc. Radiat. Transfer (1)

W. K. McGregor, J. Quant. Spectrosc. Radiat. Transfer 19, 659 (1978).
[CrossRef]

Nature (3)

J. Maddox, Nature 361, 397 (1993).
[CrossRef]

B. P. Barber and P. J. Putterman, Nature 352, 318 (1991).
[CrossRef]

S. Hilgenfeldt, S. Grossman, and D. Lohse, Nature 398, 402 (1999).
[CrossRef]

Phys. Rev. E (2)

K. Hansen and E. E. B. Campbell, Phys. Rev. E 58, 5477 (1998).
[CrossRef]

K. Weninger, C. G. Camara, and S. J. Putterman, Phys. Rev. E 63, 016310 (2001), describe the 1- and 11-MHz techniques.
[CrossRef]

Phys. Rev. Lett. (8)

D. Hammer and L. Fromhold, Phys. Rev. Lett. 85, 1326 (2000).
[CrossRef] [PubMed]

B. Gompf, R. Günther, G. Nick, R. Pecha, and W. Eisenmenger, Phys. Rev. Lett. 79, 1405 (1997).
[CrossRef]

C. C. Wu and P. H. Roberts, Phys. Rev. Lett. 70, 3424 (1993).
[CrossRef] [PubMed]

R. Hiller, S. Putterman, and B. P. Barber, Phys. Rev. Lett. 69, 1182 (1992).
[CrossRef] [PubMed]

R. Hiller and S. Putterman, Phys. Rev. Lett. 75, 3549 (1995).
[CrossRef] [PubMed]

R. Hiller and S. Putterman, Phys. Rev. Lett. 77, 2345 (1996) erratum of Ref.  3.
[CrossRef]

R. A. Hiller, S. J. Putterman, and K. R. Weninger, Phys. Rev. Lett. 80, 1090 (1998).
[CrossRef]

T. Matula, R. A. Roy, P. D. Mourad, W. B. McNamara, and K. S. Suslick, Phys. Rev. Lett. 75, 2602 (1995).
[CrossRef] [PubMed]

Proc. SPIE (1)

R. J. Thomas, D. X. Hammer, G. D. Noojin, D. J. Stolarski, B. A. Rockwell, and W. P. Roach, Proc. SPIE 2681, 402 (1996).
[CrossRef]

Sci. Am. (1)

S. Putterman, Sci. Am. 272(2), 46 (1995).
[CrossRef]

Science (1)

W. C. Moss, D. B. Clarke, and D. A. Young, Science 276, 1398 (1997).
[CrossRef]

Other (8)

Ya. B. Zeldovich and Yu. P. Raizer, Physics of Shock Waves and High-Temperature Hydrodynamic Phenomena (Academic, New York, 1966, 1967), Vols. 1 and 2.

The data are acquired from bubbles that are acoustically driven in sealed cylindrical resonators constructed with quartz walls (Figs.  1 and 3), suprasil walls (Fig.  2), and stainless-steel endcaps.5 The spectrometer (Acton 308i) was calibrated with quartz tungsten halogen and D2 lamps. No spectra are corrected for transmission of water or quartz. For quartz, but not suprasil, there is absorption for wavelengths below 300  nm that rises to 25% at 200  nm. We attribute the bump in the data at 550  nm and the dip at 360  nm to documented errors in the manufacturer-supplied calibration of our lamps (see Fig.  75 of Ref.  5).

The spectra reported here have the same spectral density and detailed shape as reported in previous papers. But in the course of recalibrating the system we find that the scale for the y axis, namely, spectral radiance, is generally lower, being down by roughly a factor of 12 compared with what was reported in Refs.  3 and 6. We have verified the new data calibrated against various lamp standards with photon counting through bandpass filters. Previously quoted values of photons per flash remain unchanged. We believe that the mistake in scaling the y axis is greater than can be accounted for by resonator variability, drive level, or thermal drift (see the discussion in Ref.  5). The corrected value of radiance plus our ability to measure flash width and bubble size combine to make possible the quantitative comparisons with blackbody radiation that are proposed here.

B. P. Barber, R. A. Hiller, R. Löfstedt, S. J. Putterman, and K. R. Weninger, Phys. Rep.281, 67 (1997).
[CrossRef]

O. Baghdassarian, B. Tabbert, and G. A. Williams, in “Spectrum of luminescence from bubble collapse: light from a plasma,” (submitted to Phys. Rev. Lett.), report blackbody-like spectral densities from laser-generated plasmas in water and from the ensuing cavitation collapse.

G. Vazquez, C. Camara, S. Putterman, and K. Weninger, “Blackbody spectra for sonoluminescing hydrogen bubbles” (submitted to Phys. Rev. Lett.), also present data that indicate an ambient radius of ∼3.0 μm.

R. Hiller, “Spectrum of single bubble sonoluminescence,” Ph.D. dissertation (University of California, Los Angeles, Los Angeles, Calif., 1995).

S. Ruuth, S. Putterman, and B. Merriman, “Hard sphere model of a sonoluminescing bubble,” (submitted to Phys. Rev. Lett.).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Spectrum (resolution, 24  nm FWHM) of 33-kHz SL from a bubble formed in water (23 °C) into which H2 was dissolved at a partial pressure of 5  Torr. Solid curve, fit to a blackbody at 6230  K. According to Eq.  (1), the flash width of 110  ps requires emission from a surface with radius 0.22 μm. Dashed curve, bremsstrahlung fit with a temperature of 15,000  K. Inset, plot of χ/TBB as a function of χ, the ionization potential of the gas used to make SL.

Fig. 2
Fig. 2

Spectrum of SL from bubbles of He (150  Torr) and Xe (3  Torr) in water (23 °C) driven at 42  kHz. Resolution, 12  nm FWHM. Solid curves, blackbody fits at 8000 K (Xe) and 20,400  K (He). Using measured flash widths of 100  ps (He) and 200  ps (Xe) yields Re0.1 μm (He) and Re0.4 μm (Xe). Ambient radii measured with light-scattering techniques5 are 5.5 μm (Xe) and 4.5 μm (averaged value for He), from which we estimate Rc [=R0/7.6 (Xe), =R0/9.8 (He)] to be 0.7 μm (Xe) and 0.5 μm (He). (Note that a 150-Torr He bubble is not in diffusive equilibrium.5) Dashed curves, best bremsstrahlung fits 21,500  K for Xe and infinite temperature for He.

Fig. 3
Fig. 3

Spectrum of SL from a cloud of cavitation bubbles in water driven at 1  MHz (given per cubic centimeter of cloud volume). The water is saturated with argon and maintained at 18 °C. Resolution, 12  nm FWHM. Solid curve, bremsstrahlung fit with temperature 85,000  K; dashed curves, blackbody curves with temperatures of 9900 and 15,000  K. Open circles, measured spectrum (60  nm FWHM) of Xe bubbles driven in water (11 °C) with sound at 11  MHz and offset vertically by an arbitrary amount.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

Pλdλ=8π2hc2Re2ΔtSLdλ/λ5exphc/λkBTBB-1,

Metrics