Abstract

Generation of tunable narrow-band terahertz (THz) radiation perpendicular to the surface of periodically poled lithium niobate by optical rectification of femtosecond pulses is reported. The generated THz radiation can be tuned by use of different poling periods and different observation angles, limited only by the available bandwidth of the pump pulse. Typical bandwidths were 50–100  GHz, depending on the collection angle and the number of periods involved.

© 2001 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. N. Katzenellenbogen and D. Grischkowsky, Appl. Phys. Lett. 58, 222 (1991).
    [CrossRef]
  2. X.-C. Zhang, B. B. Hu, J. T. Darrow, and D. H. Auston, Appl. Phys. Lett. 56, 1011 (1990).
    [CrossRef]
  3. D. H. Auston and K. P. Cheung, J. Opt. Soc. Am. B 2, 606 (1985).
    [CrossRef]
  4. Y. S. Lee, T. Meade, V. Perlin, H. Winful, T. B. Norris, and A. Galvanauskas, Appl. Phys. Lett. 76, 2505 (2000).
    [CrossRef]
  5. Y. S. Lee, T. Meade, M. DeCamp, T. B. Norris, and A. Galvanauskas, Appl. Phys. Lett. 77, 1244 (2000).
    [CrossRef]
  6. Y. Avetisyan and K. N. Kocharian, in Proceedings of the 1999 International Conference on Transparent Optical Networks (Institute of Electrical and Electronics Engineers, Piscataway, N.J., 1999), pp. 165–168.
  7. J. Arlt, C. Weiss, G. Torosyan, and R. Beigang, Phys. Rev. Lett. 79, 4774 (1997).
    [CrossRef]

2000 (2)

Y. S. Lee, T. Meade, V. Perlin, H. Winful, T. B. Norris, and A. Galvanauskas, Appl. Phys. Lett. 76, 2505 (2000).
[CrossRef]

Y. S. Lee, T. Meade, M. DeCamp, T. B. Norris, and A. Galvanauskas, Appl. Phys. Lett. 77, 1244 (2000).
[CrossRef]

1997 (1)

J. Arlt, C. Weiss, G. Torosyan, and R. Beigang, Phys. Rev. Lett. 79, 4774 (1997).
[CrossRef]

1991 (1)

N. Katzenellenbogen and D. Grischkowsky, Appl. Phys. Lett. 58, 222 (1991).
[CrossRef]

1990 (1)

X.-C. Zhang, B. B. Hu, J. T. Darrow, and D. H. Auston, Appl. Phys. Lett. 56, 1011 (1990).
[CrossRef]

1985 (1)

Arlt, J.

J. Arlt, C. Weiss, G. Torosyan, and R. Beigang, Phys. Rev. Lett. 79, 4774 (1997).
[CrossRef]

Auston, D. H.

X.-C. Zhang, B. B. Hu, J. T. Darrow, and D. H. Auston, Appl. Phys. Lett. 56, 1011 (1990).
[CrossRef]

D. H. Auston and K. P. Cheung, J. Opt. Soc. Am. B 2, 606 (1985).
[CrossRef]

Avetisyan, Y.

Y. Avetisyan and K. N. Kocharian, in Proceedings of the 1999 International Conference on Transparent Optical Networks (Institute of Electrical and Electronics Engineers, Piscataway, N.J., 1999), pp. 165–168.

Beigang, R.

J. Arlt, C. Weiss, G. Torosyan, and R. Beigang, Phys. Rev. Lett. 79, 4774 (1997).
[CrossRef]

Cheung, K. P.

Darrow, J. T.

X.-C. Zhang, B. B. Hu, J. T. Darrow, and D. H. Auston, Appl. Phys. Lett. 56, 1011 (1990).
[CrossRef]

DeCamp, M.

Y. S. Lee, T. Meade, M. DeCamp, T. B. Norris, and A. Galvanauskas, Appl. Phys. Lett. 77, 1244 (2000).
[CrossRef]

Galvanauskas, A.

Y. S. Lee, T. Meade, M. DeCamp, T. B. Norris, and A. Galvanauskas, Appl. Phys. Lett. 77, 1244 (2000).
[CrossRef]

Y. S. Lee, T. Meade, V. Perlin, H. Winful, T. B. Norris, and A. Galvanauskas, Appl. Phys. Lett. 76, 2505 (2000).
[CrossRef]

Grischkowsky, D.

N. Katzenellenbogen and D. Grischkowsky, Appl. Phys. Lett. 58, 222 (1991).
[CrossRef]

Hu, B. B.

X.-C. Zhang, B. B. Hu, J. T. Darrow, and D. H. Auston, Appl. Phys. Lett. 56, 1011 (1990).
[CrossRef]

Katzenellenbogen, N.

N. Katzenellenbogen and D. Grischkowsky, Appl. Phys. Lett. 58, 222 (1991).
[CrossRef]

Kocharian, K. N.

Y. Avetisyan and K. N. Kocharian, in Proceedings of the 1999 International Conference on Transparent Optical Networks (Institute of Electrical and Electronics Engineers, Piscataway, N.J., 1999), pp. 165–168.

Lee, Y. S.

Y. S. Lee, T. Meade, M. DeCamp, T. B. Norris, and A. Galvanauskas, Appl. Phys. Lett. 77, 1244 (2000).
[CrossRef]

Y. S. Lee, T. Meade, V. Perlin, H. Winful, T. B. Norris, and A. Galvanauskas, Appl. Phys. Lett. 76, 2505 (2000).
[CrossRef]

Meade, T.

Y. S. Lee, T. Meade, V. Perlin, H. Winful, T. B. Norris, and A. Galvanauskas, Appl. Phys. Lett. 76, 2505 (2000).
[CrossRef]

Y. S. Lee, T. Meade, M. DeCamp, T. B. Norris, and A. Galvanauskas, Appl. Phys. Lett. 77, 1244 (2000).
[CrossRef]

Norris, T. B.

Y. S. Lee, T. Meade, M. DeCamp, T. B. Norris, and A. Galvanauskas, Appl. Phys. Lett. 77, 1244 (2000).
[CrossRef]

Y. S. Lee, T. Meade, V. Perlin, H. Winful, T. B. Norris, and A. Galvanauskas, Appl. Phys. Lett. 76, 2505 (2000).
[CrossRef]

Perlin, V.

Y. S. Lee, T. Meade, V. Perlin, H. Winful, T. B. Norris, and A. Galvanauskas, Appl. Phys. Lett. 76, 2505 (2000).
[CrossRef]

Torosyan, G.

J. Arlt, C. Weiss, G. Torosyan, and R. Beigang, Phys. Rev. Lett. 79, 4774 (1997).
[CrossRef]

Weiss, C.

J. Arlt, C. Weiss, G. Torosyan, and R. Beigang, Phys. Rev. Lett. 79, 4774 (1997).
[CrossRef]

Winful, H.

Y. S. Lee, T. Meade, V. Perlin, H. Winful, T. B. Norris, and A. Galvanauskas, Appl. Phys. Lett. 76, 2505 (2000).
[CrossRef]

Zhang, X.-C.

X.-C. Zhang, B. B. Hu, J. T. Darrow, and D. H. Auston, Appl. Phys. Lett. 56, 1011 (1990).
[CrossRef]

Appl. Phys. Lett. (4)

Y. S. Lee, T. Meade, V. Perlin, H. Winful, T. B. Norris, and A. Galvanauskas, Appl. Phys. Lett. 76, 2505 (2000).
[CrossRef]

Y. S. Lee, T. Meade, M. DeCamp, T. B. Norris, and A. Galvanauskas, Appl. Phys. Lett. 77, 1244 (2000).
[CrossRef]

N. Katzenellenbogen and D. Grischkowsky, Appl. Phys. Lett. 58, 222 (1991).
[CrossRef]

X.-C. Zhang, B. B. Hu, J. T. Darrow, and D. H. Auston, Appl. Phys. Lett. 56, 1011 (1990).
[CrossRef]

J. Opt. Soc. Am. B (1)

Phys. Rev. Lett. (1)

J. Arlt, C. Weiss, G. Torosyan, and R. Beigang, Phys. Rev. Lett. 79, 4774 (1997).
[CrossRef]

Other (1)

Y. Avetisyan and K. N. Kocharian, in Proceedings of the 1999 International Conference on Transparent Optical Networks (Institute of Electrical and Electronics Engineers, Piscataway, N.J., 1999), pp. 165–168.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Schematic diagram of the PPLN crystal for surface-emitting THz generation.

Fig. 2
Fig. 2

Schematic wave-vector diagram (not to scale).

Fig. 3
Fig. 3

Experimental setup. SOS, silicon on sapphire.

Fig. 4
Fig. 4

(a) Typical waveforms and (b) amplitude spectra for two different collection angles.

Fig. 5
Fig. 5

Frequency of the generated THz radiation for different crystal angles. The dotted lines indicate the frequency positions of water absorption lines. The inset shows the total tuning range obtained with this setup.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

PzNL=dxE1E2*fy,zgt-xvg.
k1-k2+kΛ+kTHz+Δk=0.
Ω=cΛ1nIR-nTHzsinΦ.
ΔΩ/ΩΛ=C/N.
ΔΩΩΦ=nTHzcosΦnIR-nTHzsinΦΔΦ.

Metrics