Abstract

We investigate efficient fourth-harmonic generation in a single two-dimensional (2D) quadratically nonlinear photonic crystal. We propose a novel parametric process that starts with phase-matched generation of a pair of symmetric second-harmonic waves, which then interact to produce a fourth-harmonic wave that is collinear to the fundamental. We show that this process is more efficient than conventional fourth-harmonic-generation schemes by a factor that reaches 4 at low intensities and discuss how to design and optimize the nonlinear 2D photonic crystals that are implemented in LiNbO3 and LiTaO3.

© 2001 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. See, e.g., S. Fan and J. D. Joannopoulos, Opt. Photon. News 11(10), 28 (2000).
    [CrossRef]
  2. V. Berger, Phys. Rev. Lett. 81, 4136 (1998).
    [CrossRef]
  3. N. G. R. Broderick, G. W. Ross, H. L. Offerhaus, D. J. Richardson, and D. C. Hanna, Phys. Rev. Lett. 70, 4345 (2000).
    [CrossRef]
  4. S. Saltiel and Yu. S. Kivshar, Opt. Lett. 25, 1204 (2000).
    [CrossRef]
  5. A. Chowdhury, S. C. Hagness, and L. McCaughan, Opt. Lett. 25, 832 (2000).
    [CrossRef]
  6. O. Pfister, J. S. Wells, L. Hollberg, L. Zink, D. A. Van Baak, M. D. Levenson, and W. R. Bosenberg, Opt. Lett. 22, 1211 (1997).
    [CrossRef] [PubMed]
  7. A. Sukhorukov, T. J. Alexander, Yu. S. Kivshar, and S. Saltiel, Phys. Lett. A 281, 34 (2001).
    [CrossRef]
  8. S. A. Akhmanov, A. N. Dubovik, S. M. Saltiel, I. V. Tomov, and V. G. Tunkin, Pis’ma Zh. Eksp. Teor. Fiz. 20, 264 (1974) JETP Lett. 20, 117 (1974).
  9. B. A. Hooper, D. J. Gauthier, and J. M. J. Madey, Appl. Opt. 33, 6980 (1994).
    [CrossRef] [PubMed]
  10. J. P. Meyn and M. M. Fejer, Opt. Lett. 22, 214 (1997).
    [CrossRef]
  11. M. M. Fejer, G. A. Magel, D. H. Jundt, and R. L. Bayer, IEEE J. Quantum Electron. 28, 2631 (1992).
    [CrossRef]

2001 (1)

A. Sukhorukov, T. J. Alexander, Yu. S. Kivshar, and S. Saltiel, Phys. Lett. A 281, 34 (2001).
[CrossRef]

2000 (4)

See, e.g., S. Fan and J. D. Joannopoulos, Opt. Photon. News 11(10), 28 (2000).
[CrossRef]

A. Chowdhury, S. C. Hagness, and L. McCaughan, Opt. Lett. 25, 832 (2000).
[CrossRef]

N. G. R. Broderick, G. W. Ross, H. L. Offerhaus, D. J. Richardson, and D. C. Hanna, Phys. Rev. Lett. 70, 4345 (2000).
[CrossRef]

S. Saltiel and Yu. S. Kivshar, Opt. Lett. 25, 1204 (2000).
[CrossRef]

1998 (1)

V. Berger, Phys. Rev. Lett. 81, 4136 (1998).
[CrossRef]

1997 (2)

1994 (1)

1992 (1)

M. M. Fejer, G. A. Magel, D. H. Jundt, and R. L. Bayer, IEEE J. Quantum Electron. 28, 2631 (1992).
[CrossRef]

1974 (1)

S. A. Akhmanov, A. N. Dubovik, S. M. Saltiel, I. V. Tomov, and V. G. Tunkin, Pis’ma Zh. Eksp. Teor. Fiz. 20, 264 (1974) JETP Lett. 20, 117 (1974).

Akhmanov, S. A.

S. A. Akhmanov, A. N. Dubovik, S. M. Saltiel, I. V. Tomov, and V. G. Tunkin, Pis’ma Zh. Eksp. Teor. Fiz. 20, 264 (1974) JETP Lett. 20, 117 (1974).

Alexander, T. J.

A. Sukhorukov, T. J. Alexander, Yu. S. Kivshar, and S. Saltiel, Phys. Lett. A 281, 34 (2001).
[CrossRef]

Bayer, R. L.

M. M. Fejer, G. A. Magel, D. H. Jundt, and R. L. Bayer, IEEE J. Quantum Electron. 28, 2631 (1992).
[CrossRef]

Berger, V.

V. Berger, Phys. Rev. Lett. 81, 4136 (1998).
[CrossRef]

Bosenberg, W. R.

Broderick, N. G. R.

N. G. R. Broderick, G. W. Ross, H. L. Offerhaus, D. J. Richardson, and D. C. Hanna, Phys. Rev. Lett. 70, 4345 (2000).
[CrossRef]

Chowdhury, A.

Dubovik, A. N.

S. A. Akhmanov, A. N. Dubovik, S. M. Saltiel, I. V. Tomov, and V. G. Tunkin, Pis’ma Zh. Eksp. Teor. Fiz. 20, 264 (1974) JETP Lett. 20, 117 (1974).

Fan, S.

See, e.g., S. Fan and J. D. Joannopoulos, Opt. Photon. News 11(10), 28 (2000).
[CrossRef]

Fejer, M. M.

J. P. Meyn and M. M. Fejer, Opt. Lett. 22, 214 (1997).
[CrossRef]

M. M. Fejer, G. A. Magel, D. H. Jundt, and R. L. Bayer, IEEE J. Quantum Electron. 28, 2631 (1992).
[CrossRef]

Gauthier, D. J.

Hagness, S. C.

Hanna, D. C.

N. G. R. Broderick, G. W. Ross, H. L. Offerhaus, D. J. Richardson, and D. C. Hanna, Phys. Rev. Lett. 70, 4345 (2000).
[CrossRef]

Hollberg, L.

Hooper, B. A.

Joannopoulos, J. D.

See, e.g., S. Fan and J. D. Joannopoulos, Opt. Photon. News 11(10), 28 (2000).
[CrossRef]

Jundt, D. H.

M. M. Fejer, G. A. Magel, D. H. Jundt, and R. L. Bayer, IEEE J. Quantum Electron. 28, 2631 (1992).
[CrossRef]

Kivshar, Yu. S.

A. Sukhorukov, T. J. Alexander, Yu. S. Kivshar, and S. Saltiel, Phys. Lett. A 281, 34 (2001).
[CrossRef]

S. Saltiel and Yu. S. Kivshar, Opt. Lett. 25, 1204 (2000).
[CrossRef]

Levenson, M. D.

Madey, J. M. J.

Magel, G. A.

M. M. Fejer, G. A. Magel, D. H. Jundt, and R. L. Bayer, IEEE J. Quantum Electron. 28, 2631 (1992).
[CrossRef]

McCaughan, L.

Meyn, J. P.

J. P. Meyn and M. M. Fejer, Opt. Lett. 22, 214 (1997).
[CrossRef]

Offerhaus, H. L.

N. G. R. Broderick, G. W. Ross, H. L. Offerhaus, D. J. Richardson, and D. C. Hanna, Phys. Rev. Lett. 70, 4345 (2000).
[CrossRef]

Pfister, O.

Richardson, D. J.

N. G. R. Broderick, G. W. Ross, H. L. Offerhaus, D. J. Richardson, and D. C. Hanna, Phys. Rev. Lett. 70, 4345 (2000).
[CrossRef]

Ross, G. W.

N. G. R. Broderick, G. W. Ross, H. L. Offerhaus, D. J. Richardson, and D. C. Hanna, Phys. Rev. Lett. 70, 4345 (2000).
[CrossRef]

Saltiel, S.

A. Sukhorukov, T. J. Alexander, Yu. S. Kivshar, and S. Saltiel, Phys. Lett. A 281, 34 (2001).
[CrossRef]

S. Saltiel and Yu. S. Kivshar, Opt. Lett. 25, 1204 (2000).
[CrossRef]

Saltiel, S. M.

S. A. Akhmanov, A. N. Dubovik, S. M. Saltiel, I. V. Tomov, and V. G. Tunkin, Pis’ma Zh. Eksp. Teor. Fiz. 20, 264 (1974) JETP Lett. 20, 117 (1974).

Sukhorukov, A.

A. Sukhorukov, T. J. Alexander, Yu. S. Kivshar, and S. Saltiel, Phys. Lett. A 281, 34 (2001).
[CrossRef]

Tomov, I. V.

S. A. Akhmanov, A. N. Dubovik, S. M. Saltiel, I. V. Tomov, and V. G. Tunkin, Pis’ma Zh. Eksp. Teor. Fiz. 20, 264 (1974) JETP Lett. 20, 117 (1974).

Tunkin, V. G.

S. A. Akhmanov, A. N. Dubovik, S. M. Saltiel, I. V. Tomov, and V. G. Tunkin, Pis’ma Zh. Eksp. Teor. Fiz. 20, 264 (1974) JETP Lett. 20, 117 (1974).

Van Baak, D. A.

Wells, J. S.

Zink, L.

Appl. Opt. (1)

IEEE J. Quantum Electron. (1)

M. M. Fejer, G. A. Magel, D. H. Jundt, and R. L. Bayer, IEEE J. Quantum Electron. 28, 2631 (1992).
[CrossRef]

Opt. Lett. (4)

Opt. Photon. News (1)

See, e.g., S. Fan and J. D. Joannopoulos, Opt. Photon. News 11(10), 28 (2000).
[CrossRef]

Phys. Lett. A (1)

A. Sukhorukov, T. J. Alexander, Yu. S. Kivshar, and S. Saltiel, Phys. Lett. A 281, 34 (2001).
[CrossRef]

Phys. Rev. Lett. (2)

V. Berger, Phys. Rev. Lett. 81, 4136 (1998).
[CrossRef]

N. G. R. Broderick, G. W. Ross, H. L. Offerhaus, D. J. Richardson, and D. C. Hanna, Phys. Rev. Lett. 70, 4345 (2000).
[CrossRef]

Pis’ma Zh. Eksp. Teor. Fiz. (1)

S. A. Akhmanov, A. N. Dubovik, S. M. Saltiel, I. V. Tomov, and V. G. Tunkin, Pis’ma Zh. Eksp. Teor. Fiz. 20, 264 (1974) JETP Lett. 20, 117 (1974).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (2)

Fig. 1
Fig. 1

(a) Schematic of the proposed frequency-conversion scheme. Reciprocal lattice vectors are indicated by dashed arrows; wave vectors, by solid arrows. (b) Associated real lattice for LiTaO3 at 150 °C and λ=1.53 μm.

Fig. 2
Fig. 2

(a) Right, FH conversion efficiency versus dimensionless fundamental intensity for the two-channel method (solid curve) and the single-channel method (long-dashed curve). Left, advantage of the two-channel method compared with the conventional single-channel geometry, according to Eq.  (7) (dotted curve) and numerical calculations (short-dashed curve). (b) FH conversion efficiency versus wavelength for LiNbO3 (dashed curve) and LiTaO3 (solid curve); the other parameters are given in the text.

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

2k1+2π/dcosφ=k2cosθ,
2π/dsinφ=k2sinθ,
2k2cosθ+4πM/dcosφ=k4,
cosθ=n4+Mn1/M+1n2,
d=λ1/2h,cosφ=n4-n1/M+1h,
Ax=-iσ1SaA*-iσ1SbA*,
Sa,bx=-iσ1A2-iσ2HSb,a*,
Hx=-i2σ2SaSb.
ηFHG=σ22A0L-12σ1tanh2σ1A0L2,

Metrics