Abstract

Two-wave mixing of phase-modulated light beams in crystals of cubic symmetry is analyzed on the basis of the vectorial theory of light diffraction. We derive an analytical expression for phase-to-intensity transformation in crystals of the 4¯3m point group of symmetry, which differs from the previously obtained solution based on the scalar approach. The most effective transformation is achieved when the amplitude of the space-charge-field grating is equal to the quarter-wave field. It is shown that the space-charge-field grating created in GaP semi-insulating crystal at the wavelength of 632  nm is much smaller than can be predicted from the one-level band-transport model.

© 2001 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Frejlich, A. A. Kamshilin, V. V. Kulikov, and E. V. Mokrushina, Opt. Commun. 70, 82 (1989).
    [CrossRef]
  2. R. K. Ing and J.-P. Monchalin, Appl. Phys. Lett. 59, 3233 (1991).
    [CrossRef]
  3. T. Honda, T. Yamashita, and H. Matsumoto, Jpn. J. Appl. Phys. Part 1 34, 3737 (1995).
    [CrossRef]
  4. P. Delaye, A. Blouin, D. Drolet, L.-A. de Montmorillon, G. Roosen, and J.-P. Monchalin, J. Opt. Soc. Am. B 14, 1723 (1997).
    [CrossRef]
  5. P. Delaye, L.-A. de Montmorillon, and G. Roosen, Opt. Commun. 118, 154 (1995).
    [CrossRef]
  6. B. I. Sturman, E. V. Podivilov, K. H. Ringhofer, E. Shamonina, V. P. Kamenov, E. Nippolainen, V. V. Prokofiev, and A. A. Kamshilin, Phys. Rev. E 60, 3332 (1999).
    [CrossRef]
  7. N. V. Kukhtarev, V. B. Markov, S. G. Odulov, M. S. Soskin, and V. L. Vinetskii, Ferroelectrics 22, 949 (1979).
    [CrossRef]
  8. K. Kuroda, Y. Okazaki, T. Shimura, H. Okamura, M. Chihara, M. Itoh, and I. Ogura, Opt. Lett. 15, 1197 (1990).
    [CrossRef] [PubMed]

1999 (1)

B. I. Sturman, E. V. Podivilov, K. H. Ringhofer, E. Shamonina, V. P. Kamenov, E. Nippolainen, V. V. Prokofiev, and A. A. Kamshilin, Phys. Rev. E 60, 3332 (1999).
[CrossRef]

1997 (1)

1995 (2)

T. Honda, T. Yamashita, and H. Matsumoto, Jpn. J. Appl. Phys. Part 1 34, 3737 (1995).
[CrossRef]

P. Delaye, L.-A. de Montmorillon, and G. Roosen, Opt. Commun. 118, 154 (1995).
[CrossRef]

1991 (1)

R. K. Ing and J.-P. Monchalin, Appl. Phys. Lett. 59, 3233 (1991).
[CrossRef]

1990 (1)

1989 (1)

J. Frejlich, A. A. Kamshilin, V. V. Kulikov, and E. V. Mokrushina, Opt. Commun. 70, 82 (1989).
[CrossRef]

1979 (1)

N. V. Kukhtarev, V. B. Markov, S. G. Odulov, M. S. Soskin, and V. L. Vinetskii, Ferroelectrics 22, 949 (1979).
[CrossRef]

Blouin, A.

Chihara, M.

de Montmorillon, L.-A.

Delaye, P.

Drolet, D.

Frejlich, J.

J. Frejlich, A. A. Kamshilin, V. V. Kulikov, and E. V. Mokrushina, Opt. Commun. 70, 82 (1989).
[CrossRef]

Honda, T.

T. Honda, T. Yamashita, and H. Matsumoto, Jpn. J. Appl. Phys. Part 1 34, 3737 (1995).
[CrossRef]

Ing, R. K.

R. K. Ing and J.-P. Monchalin, Appl. Phys. Lett. 59, 3233 (1991).
[CrossRef]

Itoh, M.

Kamenov, V. P.

B. I. Sturman, E. V. Podivilov, K. H. Ringhofer, E. Shamonina, V. P. Kamenov, E. Nippolainen, V. V. Prokofiev, and A. A. Kamshilin, Phys. Rev. E 60, 3332 (1999).
[CrossRef]

Kamshilin, A. A.

B. I. Sturman, E. V. Podivilov, K. H. Ringhofer, E. Shamonina, V. P. Kamenov, E. Nippolainen, V. V. Prokofiev, and A. A. Kamshilin, Phys. Rev. E 60, 3332 (1999).
[CrossRef]

J. Frejlich, A. A. Kamshilin, V. V. Kulikov, and E. V. Mokrushina, Opt. Commun. 70, 82 (1989).
[CrossRef]

Kukhtarev, N. V.

N. V. Kukhtarev, V. B. Markov, S. G. Odulov, M. S. Soskin, and V. L. Vinetskii, Ferroelectrics 22, 949 (1979).
[CrossRef]

Kulikov, V. V.

J. Frejlich, A. A. Kamshilin, V. V. Kulikov, and E. V. Mokrushina, Opt. Commun. 70, 82 (1989).
[CrossRef]

Kuroda, K.

Markov, V. B.

N. V. Kukhtarev, V. B. Markov, S. G. Odulov, M. S. Soskin, and V. L. Vinetskii, Ferroelectrics 22, 949 (1979).
[CrossRef]

Matsumoto, H.

T. Honda, T. Yamashita, and H. Matsumoto, Jpn. J. Appl. Phys. Part 1 34, 3737 (1995).
[CrossRef]

Mokrushina, E. V.

J. Frejlich, A. A. Kamshilin, V. V. Kulikov, and E. V. Mokrushina, Opt. Commun. 70, 82 (1989).
[CrossRef]

Monchalin, J.-P.

Nippolainen, E.

B. I. Sturman, E. V. Podivilov, K. H. Ringhofer, E. Shamonina, V. P. Kamenov, E. Nippolainen, V. V. Prokofiev, and A. A. Kamshilin, Phys. Rev. E 60, 3332 (1999).
[CrossRef]

Odulov, S. G.

N. V. Kukhtarev, V. B. Markov, S. G. Odulov, M. S. Soskin, and V. L. Vinetskii, Ferroelectrics 22, 949 (1979).
[CrossRef]

Ogura, I.

Okamura, H.

Okazaki, Y.

Podivilov, E. V.

B. I. Sturman, E. V. Podivilov, K. H. Ringhofer, E. Shamonina, V. P. Kamenov, E. Nippolainen, V. V. Prokofiev, and A. A. Kamshilin, Phys. Rev. E 60, 3332 (1999).
[CrossRef]

Prokofiev, V. V.

B. I. Sturman, E. V. Podivilov, K. H. Ringhofer, E. Shamonina, V. P. Kamenov, E. Nippolainen, V. V. Prokofiev, and A. A. Kamshilin, Phys. Rev. E 60, 3332 (1999).
[CrossRef]

Ringhofer, K. H.

B. I. Sturman, E. V. Podivilov, K. H. Ringhofer, E. Shamonina, V. P. Kamenov, E. Nippolainen, V. V. Prokofiev, and A. A. Kamshilin, Phys. Rev. E 60, 3332 (1999).
[CrossRef]

Roosen, G.

Shamonina, E.

B. I. Sturman, E. V. Podivilov, K. H. Ringhofer, E. Shamonina, V. P. Kamenov, E. Nippolainen, V. V. Prokofiev, and A. A. Kamshilin, Phys. Rev. E 60, 3332 (1999).
[CrossRef]

Shimura, T.

Soskin, M. S.

N. V. Kukhtarev, V. B. Markov, S. G. Odulov, M. S. Soskin, and V. L. Vinetskii, Ferroelectrics 22, 949 (1979).
[CrossRef]

Sturman, B. I.

B. I. Sturman, E. V. Podivilov, K. H. Ringhofer, E. Shamonina, V. P. Kamenov, E. Nippolainen, V. V. Prokofiev, and A. A. Kamshilin, Phys. Rev. E 60, 3332 (1999).
[CrossRef]

Vinetskii, V. L.

N. V. Kukhtarev, V. B. Markov, S. G. Odulov, M. S. Soskin, and V. L. Vinetskii, Ferroelectrics 22, 949 (1979).
[CrossRef]

Yamashita, T.

T. Honda, T. Yamashita, and H. Matsumoto, Jpn. J. Appl. Phys. Part 1 34, 3737 (1995).
[CrossRef]

Appl. Phys. Lett. (1)

R. K. Ing and J.-P. Monchalin, Appl. Phys. Lett. 59, 3233 (1991).
[CrossRef]

Ferroelectrics (1)

N. V. Kukhtarev, V. B. Markov, S. G. Odulov, M. S. Soskin, and V. L. Vinetskii, Ferroelectrics 22, 949 (1979).
[CrossRef]

J. Opt. Soc. Am. B (1)

Jpn. J. Appl. Phys. Part 1 (1)

T. Honda, T. Yamashita, and H. Matsumoto, Jpn. J. Appl. Phys. Part 1 34, 3737 (1995).
[CrossRef]

Opt. Commun. (2)

P. Delaye, L.-A. de Montmorillon, and G. Roosen, Opt. Commun. 118, 154 (1995).
[CrossRef]

J. Frejlich, A. A. Kamshilin, V. V. Kulikov, and E. V. Mokrushina, Opt. Commun. 70, 82 (1989).
[CrossRef]

Opt. Lett. (1)

Phys. Rev. E (1)

B. I. Sturman, E. V. Podivilov, K. H. Ringhofer, E. Shamonina, V. P. Kamenov, E. Nippolainen, V. V. Prokofiev, and A. A. Kamshilin, Phys. Rev. E 60, 3332 (1999).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Specific efficiency ηp of (a) the phase-to-intensity transformation and (b) the optimum angle of the input polarization as functions of the angle between the external field and the 001 axis. Interacting beams propagate at a small angle with respect to the 110 axis.

Fig. 2
Fig. 2

Schematic diagram of the experimental setup for measurement of phase-to-intensity transformation by use of two-wave mixing in a photorefractive crystal.

Fig. 3
Fig. 3

Fractional intensity modulation as a function of applied voltage for the GaP sample. Solid curve, the theoretical dependence calculated with Eqs.  (2) and (3); crosses, experimental data.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

I2L=I20exp-αL1+R-1sin2ψsin2ηKL+Rsin2ψsin2ηKLsinϕt.
I2L=I20exp-αLcos2ηKL+Rsin2ηKL+Rsin2ψsin2ηKLsinϕt.
EK=2R1+REA

Metrics